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A B S T R A C T

The unique properties of Al–Si-based alloys make them suitable for components that demand structural integrity 
and wear resistance. This study was conducted to investigate the microstructure, mechanical, and drilling 
properties of a commercial alloy belonging to the Al–Si casting alloy group and containing approximately 
4.5–5.5% Si (Al–5Si–1Cu–Mg). Drilling experiments were conducted with an 8 mm uncoated HSS (High-Speed 
Steel) drill across a range of cutting speeds (V) and feed rates (f) while maintaining a consistent depth of cut 
(DoC) parameters. Microstructural analysis using optical microscopy and SEM identified key phases within the 
alloy, including α-Al, eutectic Si, β-Fe (β-Al5FeSi), and π-Fe (π-Al8Mg3FeSi6) inter-metallics. Statistical analyses of 
the effects of V and f on thrust force (Fz), surface roughness (Ra), and torque (Mz) were performed using 
Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and Analysis of Variance (ANOVA). 
The ANOVA results highlighted the significance of both V and f on the measured outputs, with optimal per-
formance observed at a V of 125 m/min and f of 0.05 mm/rev (confidence level: 95%, P < 0.05). Additionally, 
predictive models based on RSM and ANN were developed for Fz, Ra, and Mz.

1. Introduction

Technological developments have necessitated the need for light 
metals for the production of mechanical components in industry. 
Aluminum-silicon (Al–Si) alloys, which are among the light metals, are 
frequently used in commercial sectors such as automotive due to these 
alloys high fluidity, specific strength, low shrinkage in casting and good 
corrosion resistance. Since they provide advantages in reducing vehicle 
weight and improving fuel economy, their use in automotive applica-
tions such as pistons, cylinder heads and engine blocks is increasing day 
by day [1]. This trend highlights the growing importance of Al–Si alloys 
in the context of global efforts to reduce energy consumption and 
environmental impact in transportation. Research shows that a 10% 
weight reduction in cars decreases fuel expenditure by 8% and exhaust 
emissions by 4% [2]. These findings further underscore the relevance of 
improving the properties of Al–Si alloys for automotive applications.

Pure aluminum cannot be used as a final product in the industry 
because it does not meet the structural and mechanical properties 
required for direct use. Therefore, pure aluminum is alloyed with many 
elements such as silicon (Si), copper (Cu) and magnesium (Mg) to 

improve its strength and other properties. Adding elements i.e., Cu and 
Mg to Al–Si alloys develops mechanical and microstructure properties 
such as elevated strength, ductility and hardness. Recent studies have 
shown that alloying with these elements significantly enhances the 
material’s performance under various loading conditions, making it 
suitable for demanding industrial applications. In the literature review, 
Mohamed and Samuel [3] investigated the impacts of Mg addition on 
the structure of Al–Si–Cu–Mg. They found that Mg addition reduced the 
porosity without causing any noticeable initial melting. They also re-
ported that Mg content plays a significant role in defining the mechan-
ical features and microstructural stability of the materials under 
different casting conditions. Callegari et al. [4] studied the impact of 
various alloying elements on the microstructure and mechanical prop-
erties of Al–Si based casting alloys including Al–Si–Cu–Mg. They found 
that the presence of Mg and Cu considerably increased the hardness and 
tensile strength by contributing to the creation of fine precipitates 
during the aging process. They also revealed that the proportions of 
these elements should be determined in a controlled manner to optimize 
the balance between strength and ductility in these alloys. Beroual et al. 
[5] researched the effects of heat treatment (HT) and Cu (0.3 wt%) and 
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Mg (0.6 wt%) additions on structure and mechanical features of 
Al–Si–Cu and Al–Si–Mg. They highlighted that the HT process, espe-
cially the solution treatment followed by aging, significantly improved 
the tensile strength and hardness of the materials. They found that the 
alloy with Mg additions exhibited 34% more age-hardening than the 
alloy with Cu additions. It was determined that the elemental additions 
increased the strength and reduced the brittleness of the alloys by 
reducing the formation of needle-like β-Fe phases. Zhou et al. [6] 
identified that the type and morphology of the precipitated phase at the 
nanoscale changed with the rise in Cu content in Al–9Si-0.5 Mg-xCu 
casting alloys, and the yield strength improved between 103 and 130 
MPa due to the precipitation strength. It was specified that the strength 
and ductility properties of Al–9Si-0.5 Mg–2Cu improved after aging, and 
the elongation, yield and ultimate tensile strength were measured as 
8.4%, 351 MPa and 442 MPa, respectively. Aziz et al. [7] worked the 
impacts of T5 and T6 HTs on structure and mechanical properties of 
Al–Si–Cu–Mg (commercial A 319) manufactured by thixoforming cast-
ing methods. They emphasized that structure of the cast alloy comprised 
of spherical α-Al, uniformly distributed Si particles, and fragmented 
intermetallics. It was observed that T5 HT had no important impact on 
the precipitate distributed throughout the eutectic phase and the Si 
particle microstructure, while with T6 they revealed that Al2Cu phase 
precipitated in the fine equiaxed grain structure and Si particles became 
spherical and coarse.

Alparslan and Bayraktar [8] researched the structural and mechan-
ical features of as-cast and T6 HTed Al–7Si-0.6 Mg and found that the 
structure of the as-cast material comprised of α-Al, primary Si, eutectic 
Al–Si, Al5FeSi and π-AlSiMgFe phases and that these phases partially 
dissolved and became spherical with HT.

The machining of materials manufactured by the casting method 
before being used in the mechanical system (such as milling, turning, 
drilling, etc.) is necessary for precise surface quality and dimensional 
accuracy. At the same time, this process can make a significant contri-
bution to the service life and operating performance of workpieces in 
mechanical systems. In machining operations, in addition to parameters 
such as V, f and DoC, cutting tool and coating material, and coolant are 
also important factors on machinability outputs. These factors are 
effective on experimental outputs such as cutting force (F), Ra and tool 
wear, which play a significant role in determining the machinability 
index of the material. By controlling these factors in machinability, ideal 
cutting conditions can be determined. Thus, the time and cost criteria in 
production, which affect the global competitiveness of enterprises, can 
be optimized. Al–Si based alloys are commonly subjected to drilling 
processes so that they can be used in engine blocks and equipment, 
especially in the automotive industry. Although the hole drilling process 
seems like a basic process, hole surface quality, geometric and dimen-
sional tolerance play a significant role in the assembly of mechanical 
components and the performance of these components within the 
operating system. In these processes, experimental outputs that deter-
mine hole quality such as Fz, Ra, axial misalignment, circularity, burr 
formation and hole diameter vary depending on the process parameters. 
Therefore, to achieve maximum performance, it is important to control 
independent variables, to statistically reveal their effects on dependent 
variables and to model them mathematically. In the literature, Har-
iharan et al. [9] optimized the cutting parameters for minimum wear 
and maximum material removal rate and tool life in turning of Al–Si 
4032 material with coated carbide cutters under dry and wet conditions 
using different V, f and DoC parameters according to full factorial 
experimental design. In dry conditions, optimum independent variables 
were determined as 2600 rpm, 0.0982 mm/rev and 0.9 mm for V, f and 
DoC, respectively, while for wet cutting conditions they were deter-
mined as 2676 rpm, 0.125 mm/rev and 0.9 mm, respectively. Alparslan 
and Bayraktar [10] investigated the machining features of as-cast and T6 
HTed Al–7Si-0.6 Mg material in milling process with TiAlN coated 
carbide tool at different V and f and optimized the cutting parameters for 
minimum F and Ra using RSM. It was identified that the HTed alloy 

exhibited lower F and Ra compared to the as-cast alloy and the optimum 
parameters for minimum F and Ra were specified as 125 m/min and 
0.04 mm/rev for V and f, respectively. Jing et al. [11] optimized the 
independent variables for minimum Ra and Fz by ANN, RSM and genetic 
algorithm (GA) in the precision milling of Al–50%Si alloy with cemented 
carbide end mills using different cutting parameters. They found that the 
prediction performance of ANN and RSM for Ra and F was 95.83% and 
98.06%, respectively. Bhushan [12] estimated the tangential, feed and 
radial force by GA and RSM in the turning of AA7075/15 wt%SiC alloy 
produced by stir casting with carbide inserts using different cutting 
parameters. They revealed that GA gave close values to RSM in pre-
dicting the minimum tangential force, while it gave better results than 
RSM for minimum feed and radial force.

In order to provide maximum performance of workpieces used in 
mechanical systems, it is critical to determine their structural, me-
chanical and machining features in advance. This situation becomes 
more evident especially in workpieces that cannot be used directly after 
casting and require additional machining operations for geometric and 
dimensional stability. Although the machinability of Al–Si alloys has 
been extensively studied, the specific performance of Al–Si–Cu–Mg al-
loys under repeated thermal cycles, particularly in automotive appli-
cations, remains insufficiently addressed. Given the increasing demand 
for lightweight, high-performance materials in the automotive industry, 
this study focuses on Al–5Si–1Cu–Mg alloys, which exhibit promising 
properties under repeated thermal cycles. Therefore, this paper, which 
deeply examines the properties of Al–5Si–1Cu–Mg material in the as- 
cast condition, contributes to the literature in this field. Building on 
previous studies, the current research further explores how the addition 
of Mg impacts the material’s performance in automotive applications, 
particularly under thermal stress. In the study, the minimum Mz, Fz and 
Ra values after drilling were optimized with RSM and ANN, and suc-
cessful mathematical models were developed for the prediction of 
experimental results. In addition, the statistical importance of V and f on 
experimental results was determined at a confidence level of 95% with 
ANOVA, and a new perspective was brought to the literature.

2. Material and method

2.1. Specimens and drilling tests

In this study, Al–5Si–1Cu–Mg material was produced by sand casting 
technique. During the production of the alloy, the elemental compo-
nents were melted at 700 ± 5 ◦C. This melt was poured into a sand mold 
with a prismatic and angled mold cavity and solidified at room tem-
perature (Fig. 1). In the manufacturing of the Al–5Si–1Cu–Mg, 99.7% 
pure commercial Al as well as Si, Cu and Mg elements were employed. 
The chemical composition (wt.%) of produced material was confirmed 
with ICP-OES technique. Accordingly, the chemical composition is 
composed of the following components: Si: 4.5–5.5, Fe: <0.01–0.5, Cu: 
1.10–1.50, Mn: <0.01–0.10, Mg: 0.45–0.65, Ni: <0.01–0.10, Zn: 
<0.01–0.05, Ti: <0.01–0.15 and Al: Balance. The phases forming the 
microstructure of the alloy were revealed by optical microscope, energy 
dispersive spectroscopy (EDS) and scanning electron microscope (SEM) 
analyses. As seen in Fig. 1, the preparation of the samples consists of 
technical properties of the mold, metallography, hardness, tensile and 
machining test samples. The cast prismatic part was machined in a 
universal milling machine and made ready for tensile and machinability 
tests. For metallographic studies, samples were arranged by traditional 
techniques including grinding and polishing processes and analyzed 
using microscopic techniques. Hardness tests were carried out with the 
Brinell technique (HB) with a 2.5 mm ball under a load of 62.5 kgf. 
Tensile tests were executed on samples with dimensions of M12 × 88 
mm with an average deformation of 5.9x10− 3s− 1 and a constant jaw 
speed of 0.25 mm/min. After the tensile tests, fracture surfaces were 
imaged with SEM. To determine the mechanical features of the alloy, 
hardness measurements were executed by taking fifteen measurements 
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from each sample; elongation to fracture, yield and tensile strength 
values were calculated by taking the arithmetic average of the data 
obtained from three test specimens.

Then, drilling tests under dry conditions were performed on a CNC 
vertical machining center (Johnford VMC-850, 7.5 kW) with uncoated 
HSS drills, the technical properties of which are given in Table 1, at 
different cutting speeds (V: 75; 87.5; 100; 112.5 and 125 m/min), feed 
rates (f: 0.05; 0.10; 0.15; 0.20 and 0.25 mm/rev) and constant cutting 
depth (20 mm). Fz, Mz and Ra were measured as machinability outputs. 
Kistler 9257B dynamometer and Kistler 5070A amplifier were used for 
Fz and Mz measurement and Dynoware software was utilized to obtain 
data from graphics on the computer (Fig. 2).

Average Ra was determined using Mahr Perthometer M1 tracker- 
type equipment, taking into account the ISO 4287 standard. The Ra 
values were repeated five times at certain intervals around the 360◦

hole. The final Ra value was determined by the arithmetic average of 
five measurements.

2.2. Optimization of experimental outputs

2.2.1. RSM
RSM is a statistical method that uses mathematical models to 

ascertain how input and output variables relate to one another. In this 
technique, Face Centered-Central Composite Design was preferred, 
which allows the evaluation of quadratic relations between various 
input parameters together with linear effects [13]. In this study, three V 
(75, 100 and 125 m/min) and f (0.05; 0.15 and 0.25 mm/rev) were used 
as input variables as seen in Table 2, while experimental output vari-
ables were determined as Fz, Mz and Ra. As a result of the definition, 
quadratic mathematical models of experimental outputs were created as 
in Eq. (1). In this equation, i, j, k = 1, 2, 3 …. n and a0, bi, bij and bii are 
the regression coefficients of the model, Xi and Xj are the explanatory 

variables and Y is the Fz, Ra and Mz outputs. 

Y = a0 +
∑k

i=1
biXi +

∑k

ij
bijXij +

∑k

i=1
biiX2

i (1) 

in the last stage, mathematical models were developed for the prediction 
of experimental outputs according to Eq. (1). With ANOVA, the statis-
tical importance of V and f input parameters on Fz, Mz and Ra output 
responses was determined at a 95% confidence level, taking into account 
the P < 0.05 criterion.

2.2.2. ANN
ANN is an estimation method frequently used in industrial applica-

tions to model complex relationships between input and output data 
sets. In this technique, outputs can be estimated for test parameter 
combinations by creating a model with input parameters and output 
data. ANN models provide effective solutions, especially in cases where 
it is difficult to determine process characteristics with empirical equa-
tions [14]. The structure of the ANN consists of a multilayer architecture 
consisting of an input layer, one or more hidden layers, and an output 
layer. The input and output layers have a set of neurons representing the 
variables of interest. Although there is no theoretical limit to the number 
of hidden layers, one or two layers are generally considered sufficient 
[15]. The output layer processes the information from the hidden layers 
and produces an output vector. Some research shows that single-output 
ANN models provide more successful results than multiple-output 
models [16,17]. The neurons in each layer are connected to each 
other with adjustable weights. These weights are optimized until errors 
are minimized during the training process. ANN offers ideal solutions for 
a specific problem by being trained with a suitable algorithm.

In this study, ANN modeling for Fz, Mz and Ra obtained in drilling of 
Al–5Si–1Cu–Mg alloy was performed using a subprogram in MATLAB 
software. Modeling process with ANN consists of two stages using 
training and test data. To minimize the error rate during the training 
process of the network, the input and output values given to the network 
were checked and in the test stage, the results were estimated according 
to the input values without changing the weight values. Based on 
experimental results, Fz, Mz and Ra values were analyzed separately 
using the generalized feed forward network structure. V and f variables 
were defined as input parameters, and Fz, Mz and Ra as output param-
eters. A total of 25 experiments were performed for each input param-
eter according to three levels. 18 out of 25 data were categorized for 
training and 7 for testing. The input and output data were transferred to 

Fig. 1. Flow schema illustrating the arranging of the experimental specimens.

Table 1 
Technical properties of drill.

Features Value

Diameter (d1) 8 mm
Tip angle 118◦

Shaft length (L1) 117 mm
Helix length (L2) 75 mm
Material and standard HSS-DIN 338
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the software and the optimum network structures were determined by 
performing different experiments with these data (Fig. 3). During the 
training and testing process of the network, model performance was 
measured by Root Mean Square Error (RMSE) (Eq. (2)), while the 
evaluation of neural network model results was done by Mean Absolute 
Percentage Error (MAPE) (Eq. (3)) (N: number of data). The following 

criteria were taken into account for MAPE values in the evaluation of the 
model: MAPE ≤10%: High accuracy, 10% < MAPE ≤20%: Good, 20% <
MAPE ≤50%: Acceptable and MAPE >50%: Misleading prediction. The 
statistical significance and accuracy of the developed models were 
determined by the R2 correlation coefficient (Eq. (4)). 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(Actual − Predicted)2

√
√
√
√ (2) 

MAPE=
1
N

∑N

n=1

(
|Actual − Predicted|

Actual

)

×100 (3) 

R2 =1 −

⎛

⎜
⎜
⎜
⎝

∑N

n=1
(Actual − Predicted)2

∑N

n=1
(Predicted)2

⎞

⎟
⎟
⎟
⎠

(4) 

3. Results and discussion

3.1. Evaluation of experimental results

The microstructure of the alloy was carefully examined using optical 
and scanning electron microscopy (SEM) techniques, revealing a het-
erogeneous distribution of phases that play a critical role in the me-
chanical properties of the material. Semi-quantitative chemical 
compositions of the phases formed in the internal structure of the 
Al–5Si–1Cu–Mg alloy are given in Table 3. These compositions were 
determined using Energy Dispersive X-ray Spectroscopy (EDS), and the 
results were cross-checked with literature data to ensure accuracy [18,
19].

As seen in Fig. 4, the initial microstructure was characterized by 
distinct dendritic α-Al phases, which serve as the matrix, while the 
eutectic Si phase exhibited a fibrous morphology that is typical of Al–Si 
alloys. The presence of acicular β-Al5FeSi and π-Fe phases was also 
confirmed, which are known to influence the mechanical properties 
such as tensile strength and hardness.

As a result of tensile and hardness tests performed on 
Al–5Si–1Cu–Mg samples, the elongation to fracture, hardness, yield 
strength, and ultimate tensile strength were measured and found to be 
1.8 ± 1%, 85 HB ±2, 140 ± 7, and 170 ± 10 N/mm2, respectively. As 

Fig. 2. Schematic arrangement of the experimental setup for measuring cutting forces.

Table 2 
V and f parameters and its levels.

Level V (m/min) f (mm/rev)

− 1 75 0.05
0 100 0.15
1 125 0.25

Fig. 3. The architecture of the neural network.
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seen in Fig. 5, in addition to cleavage planes, pit and ridge-like structures 
were found on the fracture surfaces formed after the tensile tests. 
Furthermore, it was observed that wide surfaces and distinct micro-
cracks were formed on the fracture surface. It was seen that the fracture 
continued along the dendritic boundaries. This suggests that the hard 
intermetallic phases, along with the Si particles, contributed to the 
initiation of the fracture, and the material’s brittle nature was further 
accentuated by the presence of these phases.

As for the machinability test results, as presented in Fig. 6, it was 
observed that under constant f conditions, Mz, Fz and Ra reduced with 
rising V and increased with increasing f. It was determined that Mz, Fz 
and Ra decreased by 26.48, 6.71, 26.14% respectively, with the increase 
in V from 75 m/min to 125 m/min. With the effect of the increase in V, 
the temperature at the cutting tool-chip and workpiece interfaces in-
creases in the deformation zones. It is thought that the yield strength of 
the cut material decreases, and it is more easily exposed to plastic 
deformation due to this temperature increase [20,21]. As a result, the 

cutting process becomes easier, lower forces occur, and Fz and Mz 
decrease. In alloys containing high amounts of Al, Ra generally de-
creases with increasing V. This situation is thought to be due to two 
different reasons. The first of these is that the cutting tool-workpiece 
contact occurs in a shorter period of time, and the other is that the 
resistance of the material against the cutting tool decreases due to the 
effect of high temperature. Thus, a more stable and sensitive surface can 
be obtained [10]. In other words, the workpiece surface temperature 
increases due to the increase in V. It is thought that this temperature 
improves the surface quality processed during drilling by softening the 
metallic bond of the material due to the lower resistance of the material 
to the cutting tool [22].

It was found that the Mz, Fz and Ra values increased by 9.38%, 
2.70% and 16.84%, respectively, as the f increased from 0.05 mm/rev to 
0.25 mm/rev at a constant V of 75 m/min (Fig. 7a). The same f incre-
ment showed that Mz, Fz and Ra increased by 101.57%, 125.71% and 
41.60% at 87.5 m/min speed (Figs. 7b), 117.13%, 142.59% and 42.24% 
at 100 m/min speed (Figs. 7c), 123.88%, 114.67% and 94.45% at 112.5 
m/min speed (Figs. 7d) and 98.67%, 157.61% and 66.22% at 125 m/ 
min speed (Fig. 7e). With the increase in f, friction increases due to the 
increase in material removal rate per unit time [22] and the contact 
surface area at the tool-chip interface. As a result, more Fz and Mz are 
required for the cutting tool to resist shear stress [10]. Also, due to the 
increasing friction due to the progress, pitting or feed marks occur on the 
machined surface and the Ra increases [22]. In addition, the material 
removal rate (MMR) increases with the effect of increasing feed during 
cutting. It is thought that this increases Ra by increasing deflection and 
vibration in the tool.

During the machining of ductile materials containing high amounts 
of Al, the α-Al phase is smeared onto the cutting-edge rake face under the 
influence of thermal and mechanical stresses, causing the formation of a 
built-up layer (BUL) in the first stage [23]. As a result of the accumu-
lation of smear formation on the rake face, a built-up edge (BUE) is 
formed. During cutting, BUE starts to act like a cutting edge and disrupts 
the cutting tool geometry. This causes friction on the workpiece rather 
than the cutting process, increasing the F and Ra [20]. In this study, the 
highest BUE formation on the cutting-edge during drilling occurred at V 
of 75 m/min and f of 0.25 mm/rev parameters (Fig. 8a), while lowest 

Table 3 
Semi-quantitative chemical compositions of phases [18].

Phase Al Si Fe Cu Mg Mn

β-Al5FeSi (Observed) 58.0–70.0 12.3–17.7 15.6–22.5 0.1–0.3 – –
β-Al5FeSi (In literature) [19] 45.2–75.8 5.2–15.0 17.9–35.0 – – –
π-(Observed) 57.4–87.1 7.8–23.3 2.2–15.0 1.4–5.5 2.3–7.5 0.4–1.9
π -(In literature) [19] 37.7–54.0 25.0–33.8 0.8–11.5 5.3–12.5 9.0–16.0 –

Fig. 4. The microstructure image of alloy, a) Optic microscope and b) SEM.

Fig. 5. Fractured surface of SEM image.
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occurred at V of 125 m/min and f of 0.05 mm/rev parameters (Fig. 8d). 
It was determined that BUE decreased with the increase in V, while it 
increased with the increase in feed rate (Fig. 8). Depending on the in-
crease in V, the temperature in the primary cutting zone increases and 
the yield strength of cut material reduces with the effect of this tem-
perature. Thus, BUE decreases on the cutting tool and the machined 
surface, and the machined surface quality is improved [24]. As the f 
increases, the amount of chip removed per unit time increases, causing 
the friction surface area at the cutting tool and chip interface to increase 
[25]. In tools having low thermal conductivity and diffusion rate, heat 
transfer slows down, causing heat accumulation at the tool-chip inter-
face. This heat accumulation increases the BUE formation on the rake 
face leading to increased F and Ra [26]. When Fig. 8 is examined, it was 
seen that the composition of the layer adhering to the cutting edge is 
largely composed of Al due to thermomechanical factors. In other words, 
due to the compression forces, a large proportion of pure Al is swept 
away at the rake face by elements such as Si, Cu and Mg with high 
melting points in the alloy structure (Fig. 8-Energy-dispersive x-ray 
spectrometry A and B). These elements play a role as carriers of pure Al, 
increasing the BUE on the cutting tool and machined surface, thus 

increasing the F and Ra [20]. It was seen that spring type chip was 
formed during drilling. Scratches, serration, cracks and perforation 
occurred on the chips. It was observed that a brittle and short chip 
structure was formed due to the increase in V as provided in Fig. 8. This 
shows that saw-toothed continuous fragmented chip was formed during 
cutting. In machining, short chip formation is desired to obtain better 
machined surface quality. With short chip, chip evacuation from the 
cutting area becomes easier and can be removed quickly. At high V 
values, chips are mostly separated into segments and some continuous 
regions in the chip are blended. It has been shown in the literature that 
the change in the microstructure of the material under the effect of high 
temperature and the microstructure have a significant effect on chip 
formation during high-speed cutting in continuous and interrupted 
cutting conditions [27].

During drilling, the Si particles in the microstructure can be broken 
due to the friction between the cutting tool and the workpiece. Then, 
these particles spread over the machined surface. As a result of the 
movement of the broken particles with the ductile α-Al phase, voids may 
have formed on the machined surface, causing an increase in Ra [28]. In 
other words, Si fragmentation occurs due to plastic flow, compressive 

Fig. 6. Impact of variation in V on Fz, Ra and Mz at constant f values, a) 0.05 mm/rev, b) 0.10 mm/rev, c) 0.15 mm/rev, d) 0.20 mm/rev and e) 0.25 mm/rev.
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stress, and cutting edge-silicon particle contact. It was observed that 
fragmented Si particles concentrated in the region close to the machined 
surface due to the effect of this fragmentation were distributed under the 
surface. The contact of Si particles with the drill during drilling causes 
damage to the particles, cracks and fractures in the primary Si particles. 
As a result of the movement of broken particles, cavities may occur on 
the machined surface. It is thought that these microstructural defects 
formed on the machined surface increase the surface roughness [28]. As 
mentioned before, it was seen that the Ra value reduced with the in-
crease in V, and this situation is more clearly revealed by the machined 
subsurface images in Fig. 9. It is thought that the surface machined at 
high V has a more stable and smooth structure, which is due to less BUE 
formation on the cutting tool and the machined surface during cutting 
[29–32].

3.2. Statistical analysis

Based on the experimental design with RSM, the Fz, Ra and Mz values 
obtained during the drilling of the alloy are presented in Table 4. The 
statistical effects of input parameters V and f on Fz, Ra and Mz with 
ANOVA analysis are shown in Tables 5–7, respectively. Accordingly, it 

was determined that the binary interaction of V, f and f*f on Fz (Table 5), 
the interaction of V, f and V*V on Ra (refer to Table 6) and the variables 
V and f on Mz (refer to Table 7) were statistically significant.

Correlation coefficients (R2) were calculated as 99.93%, 96.20% and 
98.68% for Fz, Ra and Mz, respectively. These high coefficients 
demonstrate that the experimental results have a significant impact on 
the performance of the modeling. The quadratic formulas used in the 
determination of Fz, Ra and Mz with respect to input variables are 
presented in Eqs. (5)–(7), respectively. 

Fz=268.5 + 0.89V + 2564f − 0.00715 V2 + 953 f2 − 2.80 V × f (5) 

Ra=17.34 − 0.1563V − 2.33f + 0.000531 V2 − 2.3 f2 + 0.0780 V × f
(6) 

Mz= 41.1 + 1.08V + 1057f − 0.00719 V2 − 359 f2 − 3.06 V × f (7) 

in the optimization process performed with RSM, the minimum goal 
function was used for Fz, Ra and Mz. The lower and upper limits of the 
dependent and independent variables are given in Table 8. According to 
the experimental results obtained, the optimum cutting parameters for 

Fig. 7. Impact of variation in f on Fz, Mz and Ra at constant V values, a) 75 m/min, b) 87.5 m/min, c) 100 m/min, d) 112.5 m/min and e) 125 m/min.
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Fig. 8. SEM images of the cutting tool and chips, a) V: 75 m/min, f: 0.25 mm/rev, b) V: 75 m/min, f: 0.05 mm/rev, c) V: 125 m/min, f: 0.25 mm/rev and d) V: 125 m/ 
min, f: 0.05 mm/rev.
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Fig. 9. Machined subsurface images in drilling of alloys, (a) V: 75 m/min, f: 0.05 mm/rev, (b) V: 125 m/min, f: 0.05 mm/rev, (c) V: 75 m/min, f: 0.25 mm/rev and 
(d) V: 125 m/min, f: 0.25 mm/rev.

Table 4 
Experimental results measured for casted alloy.

Experimental 
number

Input parameters Output parameters

V (m/ 
min)

f (mm/ 
rev)

Fz 
(N)

Ra 
(μm)

Mz 
(Ncm)

1 75 0.05 416 8.87 126.9
2 125 0.05 388 6.55 93.30
3 100 0.15 651 7.9 180.4
4 75 0.25 939 9.42 269.2
5 125 0.25 883 7.88 205.0
6 100 0.15 648 7.91 176.3
7 100 0.15 654 8.02 188.2
8 100 0.15 657 7.99 189.5
9 100 0.05 396 7.21 112.1
10 75 0.15 674 9.01 189.5
11 100 0.15 645 7.42 176.2
12 100 0.15 646 7.34 179.3
13 125 0.15 614 7.11 164.6
14 100 0.25 920 8.20 243.8

Table 5 
ANOVA table for Fz.

Source Df SS MS F P Observation

Model 6 400249 66708 1603.14 0.000 Sig.
Blocks 1 18 18 0.43 0.533 Insig.
Lineer 2 399750 199875 4803.43 0.000 Sig.
V 1 3456 3456 83.06 0.000 Sig.
f 1 396294 396294 9523.81 0.000 Sig.
Square 2 251 126 3.02 0.114 Insig.
V*V 1 54 54 1.31 0.290 Insig.
f*f 1 248 248 5.96 0.045 Sig.
2-Way 

interaction
1 196 196 4.71 0.067 Insig.

V*f 1 196 196 4.71 0.067 Insig.
Error 7 291 42 – – –
Lack of fit 3 185 62 2.31 0.218 Insig.
Pure error 4 107 27 – – –
Total 13 400540 – – – –

Abbreviation: Sig.: Significant, InSig.: Insignificant, Df: Degree of freedom, SS: 
Sum of square, MS: Mean of square.
R2: 99.93%, R2 (Adj): 99.86% R2 (Pred): 99.35%.

Table 6 
ANOVA table for Ra.

Source Df SS MS F P Observation

Model 6 7.753 1.292 29.55 0.000 Sig.
Blocks 1 0.172 0.172 3.93 0.088 Insig.
Lineer 2 6.902 3.451 78.92 0.000 Insig.
V 1 5.529 5.529 126.45 0.000 Sig.
f 1 1.372 1.372 31.39 0.001 Sig.
Square 2 0.330 0.165 3.78 0.077 Insig.
V*V 1 0.300 0.300 6.87 0.034 Sig.
f*f 1 0.001 0.001 0.03 0.861 Insig.
2-Way interaction 1 0.152 0.152 3.48 0.104 Insig.
V*f 1 0.152 0.152 3.48 0.104 Insig.
Error 7 0.306 0.043 – – –
Lack of fit 3 0.045 0.015 0.24 0.868 Insig.
Pure error 4 0.260 0.065 – – –
Total 13 8.059 – – – –

R2: 96.20%, R2 (Adj):92.95 % R2 (Pred): 92.00%.

Table 7 
ANOVA table for Mz.

Source Df SS MS F P Observation

Model 6 27704.9 4617.5 87.44 0.000 Sig.
Blocks 1 0.0 0.0 0.00 0.986 Insig.
Lineer 2 27311.8 13655.9 258.60 0.000 Sig.
V 1 2511.3 2511.3 47.56 0.000 Sig.
f 1 24800.5 24800.5 469.64 0.000 Sig.
Square 2 140.8 70.4 1.33 0.323 Insig.
V*V 1 55.0 55.0 1.04 0.341 Insig.
f*f 1 35.2 35.2 0.67 0.441 Insig.
2-Way 

interaction
1 234.9 234.9 4.45 0.073 Insig.

V*f 1 234.9 234.9 4.45 0.073 Insig.
Error 7 369.7 52.8 – – –
Lack of fit 3 199.7 66.6 1.57 0.329 Insig.
Pure error 4 169.9 42.5 – – –
Total 13 28074.6 – – – –

R2: 98.68%, R2 (Adj): 97.55% R2 (Pred): 89.56%.
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the minimum Fz, Ra and Mz values with RSM were calculated as V: 125 
m/min and f: 0.05 mm/rev. It was found that the error rate between the 
mathematical model results obtained in the optimum parameters and 
the experimental results varied between 1.38% and 6.71%, and these 
low error rates showed that the optimization process was successfully 
performed is indicated in Table 9. In addition, the optimum input var-
iables for Fz, Ra and Mz and the response and desirability values are 
presented in Table 10. It is observed that the optimum V and f to reach 
the minimum Fz, Ra and Mz values are 125 m/min and 0.05 mm/rev, 
respectively.

After the alloy drilling process was completed, estimated mathe-
matical models were developed for Fz, Ra and Mz values using ANN. In 
the modeling process, the independent variables of V and f were defined 
as inputs, and Fz, Ra and Mz were assigned to the output layer as 
dependent variables. A single hidden layer was used in all network 
structures, and the number of neurons was structured differently for 
each model. While tansig-purelin activation functions and Scaled Con-
jugate Gradient Backpropagation Algorithm (trainscg) learning algo-
rithm were preferred in modeling Fz, purelin-purelin activation function 
and Newton backpropagation (trainbfg) learning algorithm were used 
for Ra and Mz. The most suitable network structure for Fz was deter-
mined as 2-5-1, for Ra as 2-10-1 and for Mz as 2-8-1. Weight and 
threshold values, activation functions and learning algorithms are pre-
sented in Tables 11–13, respectively, and the mathematical models 
obtained for Fz, Ra and Mz based on these values are given in Eqs. (8)– 
(10). 

Fi =
2

1 + e− 2[f .WfFi+V.WVFi+θi]
− 1 (8) 

Fz=
∑5

i=1
Fi.Wi + θj (9) 

Fz=
∑5

i=1

(
2

1 + e− 2[f .WfFi+V.WVFi+θi]
− 1

)

.Wi + θj (10) 

The mathematical models obtained for Ra according to the weight 
and threshold values are given in Eqs. (11)–(13). 

Fi = f .WfFi + V.WVFi + θi (11) 

Ra=
∑10

i=1
Fi.Wi + θj (12) 

Ra=
∑10

i=1

(
f .WfFi +V.WVFi + θi

)
.Wi + θj (13) 

The mathematical models obtained for Mz according to the weight 

and threshold values are given in Eqs. (14)–(16). 

Fi = f .WfFi + V.WVFi + θi (14) 

Mz=
∑8

i=1
Fi.Wi + θj (15) 

Mz=
∑8

i=1

(
f .WfFi +V.WVFi + θi

)
.Wi + θj (16) 

in the network structures created with ANN, the RMS, MAPE and R2 

values for the Fz, Ra and Mz outputs are presented in Table 14. When the 
obtained results are examined, it was determined that the R2 values are 
between 0.9974 and 0.9993, and the MAPE values are between 0.8887 
and 2.4432. These values indicated that the error rate in the estimation 
of experimental data is below 5% and that ANN models can predict the 
results with high accuracy.

Lastly, the experimental results (Fz, Ra and Mz) obtained as a result 
of the drilling tests were compared with RSM and ANN techniques and 
the prediction performances of these techniques depending on the error 
rates of the mathematical models created were analyzed (Table 15). 
According to the evaluations, while the error rates of RSM in estimating 

Table 8 
Goal and independent variables for optimization of Fz, Ra, and Mz.

Variables Goal Lower limit Upper limit Weight Significance

V (m/min) Limit range 75 125 1 1
f (mm/rev) Limit range 0.05 0.25
Fz (N) Minimum 388 939
Ra (μm) Minimum 6.55 9.42
Mz (Ncm) Minimum 93.3 269.25

Table 9 
Comparison of experimental and optimum results.

Output 
Parameter

V (m/ 
min)

f (mm/ 
rev)

Experimental 
result

Optimum 
response

Error 
(%)

Fz (N) 125 0.05 388 381.11 − 1.77
Ra(μm) 6.55 6.459 − 1.38
Mz (Ncm) 103.4 96.461 − 6.71

Table 10 
Independent variable parameters and its optimum values.

V (m/ 
min)

f 
(mm/ 
rev)

Optimum 
value, Fz (N)

Optimum 
value, Ra 
(μm)

Optimum 
value, Mz 
(Ncm)

Desirability

125 0.05 381.11 6.459 96.461 0.994

Table 11 
Weight and threshold values for each neuron in Fz.

i W1 W2 θi Lw θ6

1 27.94961 − 0.21327 − 1.68524 − 1.62185 1.612066
2 30.31877 − 0.11817 − 9.2325 − 1.61693 –
3 − 13.8773 0.296776 − 9.14043 1.620129 –
4 15.40204 − 0.00442 − 0.90565 1.640512 –
5 17.51585 − 0.0081 − 2.80913 1.630368 –

Table 12 
Weight and threshold values for each neuron in Ra.

i W1 W2 θi Lw θ11

1 − 0.92051 0.06748 − 1.90771 − 2.0522 0.936473
2 − 0.66138 − 0.58777 − 1.31878 − 1.327 –
3 − 0.16174 − 0.57097 1.306212 1.3529 –
4 1.11969 − 0.46266 − 0.1569 − 0.521 –
5 0.856703 0.449379 0.377925 0.7617 –
6 0.214264 0.506652 − 0.97467 − 0.7696 –
7 0.692709 − 0.09152 1.043225 1.1351 –
8 − 0.29605 − 0.6844 − 0.57075 − 0.5644 –
9 − 0.80074 0.567302 0.467193 − 0.2831 –
10 0.380636 0.293331 − 0.61387 − 0.7539 –

Table 13 
Weight and threshold values for each neuron in Mz.

i W1 W2 θi Lw θ9

1 2.948136745 − 0.408331819 − 1.34252 3.919242 9.295644
2 3.377475489 0.588057859 − 1.54713 4.129223 –
3 14.45539596 − 0.893356624 0.240263 15.28315 –
4 − 16.63434383 − 0.565373654 − 7.99395 − 13.3967 –
5 2.743026783 0.71975661 7.418378 − 0.96517 –
6 − 1.687985708 0.24353408 1.341268 − 3.11595 –
7 11.65639883 0.879353442 6.912928 8.738089 –
8 − 2.529769245 0.31465355 3.546087 − 4.69264 –
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Fz, Ra and Mz varied in the range of 0.40–3.07%, 1.90–5.99% and 
0.52–4.81%, respectively; the error rates of ANN in the predictions were 
determined to be in the range of 0.02–2.43% for Fz, 0.87–2.12% for Ra 
and 0.39–4.38% for Mz. Considering these results, it was seen that ANN 
had higher prediction performance compared to RSM.

4. Conclusion

In this study, the structural, mechanical and machininig properties of 
the Al–5Si–1Cu–Mg material manufactured by sand casting technique 
were investigated comprehensively. The results of the machinability 
tests were evaluated on parameters i.e., Fz, Ra and Mz, and these 
experimental data were analyzed with RSM and ANN techniques to 
create mathematical models. Moreover, the impacts of input factors i.e., 
V and f rate on machinability indicators were statistically evaluated via 
ANOVA analysis. The main results obtained from the study are sum-
marized below. 

- The structure of the material consists of aluminum-rich α-Al matrix, 
eutectic Si and Fe-rich lamellar and acicular β-Fe and π-Fe interme-
tallic phases.

- Micro cracks, cleavage planes, pits and ridge-like structures were 
detected on the fracture surface observed after tensile tests. These 
microstructures contributed to the mechanical strength of the alloy 
and affected the fracture behavior.

- During the drilling process of the alloy, the enhance in V caused a 
decrease in Fz, Ra and Mz values, but the enhance in f increased the 
values of these indicators.

- BUE was highly formed especially at parameters i.e., V: 75 m/min 
and f: 0.25 mm/rev, and it reduced the lowest level at V: 125 m/min 
and f: 0.05 mm/rev. The reduce in BUE formation contributed to the 
improve in machining performance as well as better smoothness of 
the workpiece surface.

- Scratches, serration, cracks and perforation occurred on the chips 
during drilling. It was observed that shorter and more brittle chips 
were formed at high V. This situation shows that the effects of chip 
formation on the cutting tool and material at high V differ.

- According to ANOVA analysis, it was point out that the V and f were 
statistically important on Fz, Ra and Mz at 95% confidence level. R2 

correlation coefficients were calculated as 99.93% for Fz, 96.20% for 
Ra and 98.68% for Mz, which shows that the models made high 
accuracy predictions.

- As a result of the optimization performed with RSM, the most suit-
able cutting parameters for minimum Fz, Ra and Mz values were 
marked as V: 125 m/min and f: 0.05 mm/rev.

- In the analyses performed with ANN, the most suitable network 
structures for Fz, Ra and Mz were determined as 2-5-1, 2-10-1 and 2- 
8-1, respectively. ANN presented better predictions having lower 
error rates compared to RSM method.

As per findings of the paper, several suggestions are recommended as 
follows: First, comparative studies of different alloy compositions can be 
performed to obtain more information about the mechanical properties 
and machinability characteristics. Furthermore, the impacts of various 
cutting tool geometries and surface coatings during the drilling can be 
investigated, thus optimizing the cutting tool performance. While long- 
term performance analyses provide information on the durability of the 
machined products, material behaviors can be studied in more detail 
using simulation methods such as finite element analysis. Integration of 
advanced manufacturing technologies, especially methods such as 3D 
printing, can develop innovative approaches in material design. Finally, 
the environmental impacts of these processes should be evaluated, and 
sustainable manufacturing practices should be encouraged.
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Table 14 
RMSE, MAPE and R2 values for training and testing datas in Fz, Ra and Mz.

Type RMSE MAPE R2

Fz (N)

ANN Training Data 4.9691 0.8887 0.9993
ANN Test Data 9.6545 1.0325 0.9987

Ra (μm)

ANN Training Data 0.1469 1.4237 0.9852
ANN Test Data 0.1257 1.5504 0.9977

Mz (Ncm)

ANN Training Data 3.6084 2.2832 0.9974
ANN Test Data 4.9643 2.4432 0.9974

Table 15 
Experimental, RSM, ANN results and error rates in different cutting parameters.

Cutting 
Parameters

RSM ANN

Fz (N)

V (m/min); f 
(mm/rev)

Experimental 
result

Model 
result

Error 
rate (%)

Model 
result

Error 
rate (%)

87.5; 0.05 412 409.06 0.71 407.06 1.19
125; 0.05 388 380.21 2.00 387.08 0.23
100; 0.1 520 522.13 0.40 522.89 0.55
75; 0.15 674 666.87 1.05 669.52 0.66
112.5; 0.15 620 634.22 2.29 635.09 2.43
87.5; 0.2 800 789.95 1.25 799.79 0.02
125; 0.2 769 745.35 3.07 748.57 2.65
100; 0.25 920 912.06 0.86 913.45 0.71

Ra (μm)

87.5; 0.05 7.90 8.109 2.44 8.06 1.95
125; 0.05 6.55 6.77 3.41 6.68 1.99
100; 0.1 7.66 7.48 2.33 7.77 1.30
75; 0.15 9.01 9.55 5.99 9.76 1.31
112.5; 0.15 7.61 7.46 1.90 7.67 0.87
87.5; 0.2 8.67 8.39 3.16 8.76 1.10
125; 0.2 7.26 7.04 1.95 7.03 1.83
100; 0.25 8.20 7.89 3.76 8.27 2.12

Mz (Ncm)

87.5; 0.05 121.10 119.11 1.63 123.58 2.05
125; 0.05 93.30 98.41 4.81 107.93 4.38
100; 0.1 181.80 148.71 3.93 149.64 3.32
75; 0.15 189.50 197.70 4.32 191.86 1.24
112.5; 0.15 183.40 170.43 1.70 172.71 0.39
87.5; 0.2 226 224.04 0.86 214.42 4.27
125; 0.2 198.30 192.29 3.02 195.77 1.27
100; 0.25 243.80 242.51 0.52 237.48 2.58
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[8] Alparslan C, Bayraktar Ş. An experimental study on microstructural, mechanical 
and machinability properties of as-cast and heat-treated Al-7Si-Mg alloy. Silicon 
2024;16:3971–85. https://doi.org/10.1007/s12633-024-02968-z.

[9] Kamatchi Hariharan M, Rajkamal MD, Ravikumar K, Sheik Mohammed M. 
Investigation on effect of TiN, TiAlN & DLC-triple layer coated carbide tool in 
machining of Al-Si 4032 alloy. Mater Today Proc 2022;59:39–46. https://doi.org/ 
10.1016/j.matpr.2021.10.197.
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