dc.contributor.author | Ellidokuzoğlu, Hacer Bilgin | |
dc.contributor.author | Demiriz, Serkan | |
dc.date.accessioned | 2022-09-25T08:56:24Z | |
dc.date.available | 2022-09-25T08:56:24Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.citation | Ellidokuzoglu, H.B. & Demiriz, S. (2021). [l(p)](e.r) Euler-Riesz Difference Sequence Spaces. Analysis in Theory and Applications, 37(4), 557-571. http://doi.org/10.4208/ata.OA-2017-0068 | en_US |
dc.identifier.issn | 1672-4070 | |
dc.identifier.issn | 1573-8175 | |
dc.identifier.uri | http://doi.org/10.4208/ata.OA-2017-0068 | |
dc.identifier.uri | https://hdl.handle.net/11436/6536 | |
dc.description.abstract | Baar and Braha [1], introduced the sequence spaces l(infinity), C and C-0 of Euler- Cesaro bounded, convergent and null difference sequences and studied their somere properties. Then, in [2], we introduced the sequence spaces [l(infinity)] and [c](e.r) and [c(0)](e.r), of Euler-Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E-1 and Riesz mean R-q with backward difference operator Delta. The main purpose of this study is to introduce the sequence space [l(p)](e.r), of Euler-Riesz p absolutely convergent series, where 1 <= p < infinity, difference sequences by using the composition of the Euler mean El and Riesz mean R-q with backward difference operator Delta. Furthermore, the inclusion l(p) subset of [(p)](e.r), hold, the basis of the sequence space [l(p)](e.r) is constucted and alpha, -beta- and gamma- duals of the space are determined. Finally, the classes of matrix transformations from the [l(p)](e.r) Euler-Riesz difference sequence space to the spaces l(infinity),,c and c(0) are characterized. We devote the final section of the paper to "examine some geometric properties of the space [l(p)](e.r.) | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Global Scince Press | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Composition of summability methods | en_US |
dc.subject | Riesz mean of order one | en_US |
dc.subject | Euler mean of order one | en_US |
dc.subject | Backward difference operator | en_US |
dc.subject | Sequence space | en_US |
dc.subject | BK space | en_US |
dc.subject | Schauder basis | en_US |
dc.subject | Beta-duals | en_US |
dc.subject | Matrix transformations | en_US |
dc.title | [l(p)](e.r) Euler-riesz difference sequence spaces | en_US |
dc.type | article | en_US |
dc.contributor.department | RTEÜ, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Ellidokuzoğlu, Hacer Bilgin | |
dc.identifier.doi | 10.4208/ata.OA-2017-0068 | en_US |
dc.identifier.volume | 37 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 557 | en_US |
dc.identifier.endpage | 571 | en_US |
dc.relation.journal | Analysis in Theory and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |