• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sequential forward mother wavelet selection method for mental workload assessment on N-back task using photoplethysmography signals

Thumbnail

Göster/Aç

Full Text / Tam Metin (1.989Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Aydemir, Tuğba
Şahin, Mehmet
Aydemir, Önder

Üst veri

Tüm öğe kaydını göster

Künye

Aydemir, T., Sahin, M. & Aydemir, O. (2021). Sequential forward mother wavelet selection method for mental workload assessment on N-back task using photoplethysmography signals. Infrared Physics & Technology, 119, 103966. https://doi.org/10.1016/j.infrared.2021.103966

Özet

The increasing demands of a cognitive task require additional brain resources. This demand, known as mental workload, can lead to deteriorated task performance. Therefore, assessment of mental workload can provide a proper working environment to promote the working efficiency or improve safety in high-risk working environments for a subject. In this study, we present a novel sequential forward mother wavelet selection method for three levels of mental workload assessment on N-back task using photoplethysmography (PPG) signals, which non-invasively measures the blood volume changes in the microvascular bed of tissue from the skin surface with a low-cost opto-electronic technique. The proposed method was successfully applied to a PPG dataset, which was recorded from 22 healthy subjects during an N-back task using a wearable sensor. Instead of using only one mother wavelet, the features were extracted from effective mother wavelet combinations by means of a sequential forward mother wavelet selection method. In this three-class problem, the highest classification accuracy (CA) rates were achieved with 10 s (s) PPG signal segments compared with the 6 s, and 8 s PPG signal segments. For the 10 s PPG signals segments the highest CA was obtained as 76.67% for Subject 20 and the average CA for all subjects was obtained as 65.76%. Furthermore, the proposed method provided 3.59% CA improvement in average. We believed that the proposed method could ensure a great alternative to conventional mental workload assessment techniques.

Kaynak

Infrared Physics & Technology

Cilt

119

Bağlantı

https://doi.org/10.1016/j.infrared.2021.103966
https://hdl.handle.net/11436/6626

Koleksiyonlar

  • FEF, Fizik Bölümü Koleksiyonu [354]
  • Scopus İndeksli Yayınlar Koleksiyonu [5917]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.