dc.contributor.author | Bişgin, Mustafa Cemil | |
dc.contributor.author | Sönmez, Aldulcabbar | |
dc.date.accessioned | 2022-11-04T07:59:15Z | |
dc.date.available | 2022-11-04T07:59:15Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Bişgin,M. & Sönmez,A.(2022).Compactness of quadruple band matrix operator and geometric properties. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica,21(1) 17-32. https://doi.org/10.2478/aupcsm-2022-0002 | en_US |
dc.identifier.isbn | 2081-545X | |
dc.identifier.issn | 2300-133X | |
dc.identifier.uri | https://doi.org/10.2478/aupcsm-2022-0002 | |
dc.identifier.uri | https://hdl.handle.net/11436/6918 | |
dc.description.abstract | In this work, we characterize the class of compact matrix operators from c(0)(Q), c(Q) and l(infinity)(Q) into c(0), c and l(infinity), respectively, with the notion of the Hausdorff measure of noncompactness. Moreover, we determine some geometric properties of the sequence space l(p) (Q). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Sciendo | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Matrix transformations | en_US |
dc.subject | Matrix domain | en_US |
dc.subject | Compact operators | en_US |
dc.subject | Haus-dorff measure of noncompactness | en_US |
dc.subject | Matrix classes | en_US |
dc.title | Compactness of quadruple band matrix operator and geometric properties | en_US |
dc.type | article | en_US |
dc.contributor.department | RTEÜ, Fen - Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Bişgin, Mustafa Cemil | |
dc.identifier.doi | 10.2478/aupcsm-2022-0002 | en_US |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 17 | en_US |
dc.identifier.endpage | 32 | en_US |
dc.relation.journal | Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica | en_US |
dc.relation.tubitak | 119F214 | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |