Basit öğe kaydını göster

dc.contributor.authorBayraktar, Şenol
dc.contributor.authorAlparslan, Cem
dc.contributor.authorSalihoğlu, Nurten
dc.contributor.authorSarıkaya, Murat
dc.date.accessioned2025-02-03T07:27:11Z
dc.date.available2025-02-03T07:27:11Z
dc.date.issued2025en_US
dc.identifier.citationBayraktar, Ş., Alparslan, C., Salihoğlu, N., & Sarıkaya, M. (2025). A Holistic Research Based on RSM and ANN for Improving Drilling Outcomes in Al-Si-Cu-Mg (C355) Alloy. Journal of Materials Research and Technology, 35, 1596-1607. https://doi.org/10.1016/j.jmrt.2025.01.115en_US
dc.identifier.issn2238-7854
dc.identifier.urihttps://doi.org/10.1016/j.jmrt.2025.01.115
dc.identifier.urihttps://hdl.handle.net/11436/9970
dc.description.abstractThe unique properties of Al–Si-based alloys make them suitable for components that demand structural integrity and wear resistance. This study was conducted to investigate the microstructure, mechanical, and drilling properties of a commercial alloy belonging to the Al–Si casting alloy group and containing approximately 4.5–5.5% Si (Al–5Si–1Cu–Mg). Drilling experiments were conducted with an 8 mm uncoated HSS (High-Speed Steel) drill across a range of cutting speeds (V) and feed rates (f) while maintaining a consistent depth of cut (DoC) parameters. Microstructural analysis using optical microscopy and SEM identified key phases within the alloy, including α-Al, eutectic Si, β-Fe (β-Al5FeSi), and π-Fe (π-Al8Mg3FeSi6) inter-metallics. Statistical analyses of the effects of V and f on thrust force (Fz), surface roughness (Ra), and torque (Mz) were performed using Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and Analysis of Variance (ANOVA). The ANOVA results highlighted the significance of both V and f on the measured outputs, with optimal performance observed at a V of 125 m/min and f of 0.05 mm/rev (confidence level: 95%, P < 0.05). Additionally, predictive models based on RSM and ANN were developed for Fz, Ra, and Mz.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAl–Si alloyen_US
dc.subjectANNen_US
dc.subjectBuilt up-edgeen_US
dc.subjectDrillingen_US
dc.subjectMachiningen_US
dc.subjectOptimizationen_US
dc.subjectRSMen_US
dc.titleA holistic research based on RSM and ANN for improving drilling outcomes in Al–Si–Cu–Mg (C355) alloyen_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Makine Mühendisliği Bölümüen_US
dc.contributor.institutionauthorBayraktar, Şenol
dc.contributor.institutionauthorAlparslan, Cem
dc.contributor.institutionauthorSalihoğlu, Nurten
dc.identifier.doi10.1016/j.jmrt.2025.01.115en_US
dc.identifier.volume35en_US
dc.identifier.startpage1596en_US
dc.identifier.endpage1607en_US
dc.relation.journalJournal of Materials Research and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster