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Abstract
In this study, a mathematical model of bacterial resistance considering the immune
system response and antibiotic therapy is examined under random conditions.
A randommodel consisting of random differential equations is obtained by using the
existing deterministic model. Similarly, stochastic effect terms are added to the
deterministic model to form a stochastic model consisting of stochastic differential
equations. The results from the random and stochastic models are also compared
with the results of the deterministic model to investigate the behavior of the model
components under random conditions.
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1 Introduction
Epidemic diseases, the effects of drugs and many other phenomena in the fields of health,
medicine, biology etc. have been widely analyzed through the use of mathematical models
in the last century. The majority of the models used in epidemiology include systems of de-
terministic differential equations. However, it is well known that some of the deterministic
quantities used in modeling, e.g. epidemiological, biological events are acquired through
statistical analysis of the real-life data. Many of the numerical values of the parameters
used in modeling studies, especially for newly emerging diseases, the modification of an
existing model for a new disease or for trial of new drugs/treatments, are determined from
the statistical investigation of the limited number of data available on the event. Thus, the
uncertainty of these parameters is neglected in deterministic models. This uncertainty
can be modeled in the equation systems using random variables or stochastic processes.
By implementing random components into the deterministic equation system and analyz-
ing the statistical properties of the results, we aim to obtain information on the properties
of the randomness of these parameters. The use of random and stochastic terms is more
effective in this sense, compared with other tools of deterministic analysis or fractional
calculus. In this context, we will be using random effect and stochastic noise terms on a
mathematical model for antibiotic resistance to analyze the randomness of results.

The World Health Organization (WHO) describes ‘Antimicrobial Resistance (AMR)’ as
follows: Resistance of a microorganism to an antimicrobial drug that was originally ef-
fective for treatment of infections caused by it. WHO reports that without effective anti-
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infective treatment, many standard medical treatments will fail or turn into very high risk
procedures []. Antibiotic therapy is the most common method for battling bacterial in-
fections worldwide. Most of the classes of antibiotics used today have been introduced in
the ‘golden era of antibiotics’ s-s []. However, various factors have caused a de-
cline in research aimed at the discovery of novel antibacterial agents [, ]. Only five new
significant classes of antibiotics were discovered in the last  years []. A novel treatment
for bacterial infections is necessary, since the introduction of every antibiotic is followed
by the occurrence of new bacteria resistant to that class []. Resistance is acquired either
through mutations in the chromosome (vertical evolution) or through conjugation and
transduction which can take place between the same or different bacteria that may also
cause multiple drug resistance (horizontal evolution) [, , ]. The public threat of antibi-
otic resistance is also affected by inappropriate use of anti-infective medicine for human
and animal food production, together with inadequate measures to control the spread of
diseases. Increasing resistance of bacteria has social and economic implications like grow-
ing morbidity and mortality from infections and the rise of treatment costs [, ].

There are many other mathematical models which analyze antibiotic resistance from
different perspectives: Dasbasi and Ozturk investigated a model of bacterial resistance to
multiple drugs and immune system response []; Ternent et al. used a model of combined
antibiotic and anti-virulent treatment to monitor the population dynamics of bacteria [];
Ibarguen-Mondragon et al. evaluated a model on bacterial resistance to multiple antibi-
otics caused by spontaneous mutations []; D’Agata et al. studied a model of antibiotic
resistance in hospitals []; Austin and Anderson investigated antibiotic resistance within
patient, hospital and the community using a simple mathematical model []. Most of the
models on bacterial resistance are compartmental models, investigating the course of the
event through changes in the compartments of the model using deterministic differential
equation systems. There are also some mathematical models that study fractional deriva-
tion on several phenomena like river blindness disease []; lassa hemorrhagic fever [];
rubella disease []; immunegenic tumors [] and heat transfer []. Since we concentrate
on the random nature of the parameters of the antibiotic resistance model, we will be im-
plementing random effects into the deterministic system rather than fractional derivation.
Some modeling studies which compare stochastic and deterministic models in this regard
can be given as follows: Imran et al. compared the models for analyzing Hepatitis C [];
Lahrouz et al. used a SIRS epidemic model for comparison [] and Bekiryazici et al. com-
pared the results of models for Dengue disease [].

In this study, we will be using a deterministic model of immune system response and
bacterial resistance with antibiotic therapy to form random and stochastic models of the
event []. The random and stochastic models will be obtained by adding random effect
and stochastic noise terms into the deterministic model to analyze the uncertainty of the
antibiotic resistance. The motivation of this work is the previous studies of the authors
where the random dynamics of an avian-human influenza model [] and a biochemical
reaction model [] were analyzed. Similarly, the random behavior of the solutions of our
model will be analyzed from the simulations and solutions of the random and stochastic
models. First, the deterministic solution of the model will be given along with the phase
portraits to investigate the deterministic behavior of the model components. Using the
deterministic model, a random model of antibiotic resistance will be obtained by adding
random effect terms to the parameters of the equation system. The random parameters
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will represent the uncertainty in the nature of the parameters and, thus, we will be able to
analyze the randomness of the system though the solutions of the random system. Also, a
stochastic model of antibiotic resistance will be obtained by adding stochastic noise terms
to the deterministic model. Solutions of all three models will be given in the conclusion,
where a comparison of the results will underline the random behavior of the model and
the interpretations of variations from the deterministic model. The statistical properties
of the random results will provide useful insights for the uncertainty in the behavior of
antibiotic resistance which cannot be modeled by using deterministic equations.

2 Deterministic model of antibiotic resistance
The deterministic model in [] is used in this study:

dS
dt

= βSS
(

 –
S + R

T

)
– η̄SB – S

EmaxA
E + A

– μSA – σSR,

dR
dt

= ( – c)βSR
(

 –
S + R

T

)
– η̄RB + μSA + σSR,

dB
dt

= βBB
(

 –
B
�

)
– λB(S + R),

dA
dt

= –αA.

()

The variables of this model are as follows: S(t) is the size of the population of susceptible
bacteria at time t, R(t) is the size of the population of resistant bacteria at time t, B(t) is the
size of the population of immune cells at time t and A(t) is the concentration of antibiotic
at time t. Basically, the model consists of four differential equations describing the change
in the bacteria, immune cells and antibiotics in time. Note that this model is a modified
version of some equation systems used for analyzing bacterial resistance under various
situations (see, e.g., [, , ]). The initial values of the variables are needed for simulations
of the model:

S() =  ×  cells, R() =  cells, B() =  cell, A() =  μg/ml.

The flowchart of model () is given in [] (Figure ). The actions illustrated with arrows
going in and out of the variables are described by the parameters of the model. The values
of the parameters and the initial conditions have been taken from [, , ] (Table ). The
time variable t indicates the number of days. The initial conditions imply an environment
where there are susceptible bacteria, resistant bacteria and immune cells of the given val-
ues and the given concentration of the antibiotic is administered. It should also be noted
that various other values can be obtained for the initial conditions and the parameters
from the literature [, ].

2.1 Deterministic results
The numerical solutions of the deterministic equation system are obtained as follows.
Note that the built-in low order methods of MATLAB are used to obtain these results
(Figure ).

The maximum and minimum values of the numerical solutions of the variables of the
deterministic model are obtained in Table .



Merdan et al. Advances in Difference Equations  (2017) 2017:133 Page 4 of 19

Figure 1 The flowchart of model (1) (as a modification from [5]).

Table 1 Descriptions and values of the parameters

Parameter Description Value

βS Birth rate of sensitive bacteria 0.8 day–1

T Carrying capacity of bacterial population 109 cells
c Fitness cost 0.5 (dimensionless)
η̄ Death rate of sensitive and resistant bacteria 0.3 day–1

μ Sensitive bac. mutation rate by exposure to antibiotic 10–6 mut× gen
σ Conjugation rate of bacteria 10–5 day–1

Emax Maximum killing rate of antibiotic 26.4 day–1

E50 Antibiotic concentration for half max. kill rate 5 μg/ml
βB Recruitment rate of immune cells 3 day–1

� Carrying capacity of immune cells 1.8× 105 cells
λ Loss rate of immune cells by apoptosis 6× 10–6 cells–1 days–1

α Dose of antibiotic administration 5 mg/kg/day

The number of susceptible cells decreases to . around t = . meaning almost all of
the susceptible bacteria either gain resistance or are destroyed through the process. Tak-
ing the changes in the number of resistant bacteria into account, it can be said that a part
of the susceptible bacteria turn to resistant bacteria in the beginning, but all of these are
destroyed afterwards. The number of resistant bacteria slightly increases in the beginning
of the process and hits its maximum value . at t = ., after which it starts decreas-
ing. This shows that susceptible bacteria conjugate with resistant bacteria and some of
the susceptible bacteria gain resistance to antibiotics. However, both the resistant bacte-
ria and the susceptible bacteria are almost cleared through the end of the process. The
size of the immune cell population keeps increasing and hits its maximum value .
at the end of the process, t = ., meaning the body keeps sending immune cells to the
region of infection until all the bacteria are cleared. The concentration of the antibiotic
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Figure 2 Solutions of the deterministic model.

Table 2 Extremum values obtained for the variables

Variable Maximum Time Minimum Time

S(t) 6,000 0 5.824 1.09
R(t) 20.16 0.09 0.004912 1.5
B(t) 89.91 1.5 1 0
A(t) 4 0 0.002193 1.5

keeps decreasing throughout the process until its hits its minimum value . at the
end of the process t = .. The equation system used in this study is a well-posed model
and the results obtained from the model are compatible with the results of the referred
study for the parameters under consideration. The results for the deterministic, random
and stochastic models will be investigated for the first  hours of the event (t ∈ (, .)).
Although the random nature of the model components is the main focus of this study,
the steady states and other dynamics of the model can provide an in-depth analysis of the
deterministic event [, ].

2.2 Deterministic behavior of model components
The -dimensional and -dimensional phase portraits of system () are given in Figures 
and  for various values of the parameters. The trajectories in the graphs demonstrate
the behavior of the model components and the mutual relation of the dynamics of the
variables of the system.

3 Random model of antibiotic resistance
The coefficients of the deterministic model are calculated through statistical evaluation
of data obtained from various cases around the world. The values of the coefficients are
assumed to be constant at the mean of their distribution for the deterministic analysis.
However, in reality, these values are not constant and vary for every different case. For
instance, the rate of loss of immune cells due to pathogen-induced apoptosis is consid-
ered to be constant at  × –, whereas this should be a random value distributed around
× –. A different approach to this event by taking the coefficients are random variables
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Figure 3 Two-dimensional phase portraits of the deterministic system.

Figure 4 Three-dimensional phase portraits of the deterministic system.

could produce a model that describes the possible variations in the results []. Since the
coefficients of the deterministic equation system are known to be random numbers in na-
ture, we build the system of random differential equations by transforming the coefficients
of system () to random variables. Hence, by using normal distribution, we will obtain the
new set of random coefficients:

βS ∼ N
(
a, s


)
, T ∼ N

(
a, s


)
, c ∼ N

(
a, s


)
, η̄ ∼ N

(
a, s


)
,

μ ∼ N
(
a, s


)
, σ ∼ N

(
a, s


)
, Emax ∼ N

(
a, s


)
, E ∼ N

(
a, s


)
,

βB ∼ N
(
a, s


)
, � ∼ N

(
a, s


)
, λ ∼ N

(
a, s


)
, α ∼ N

(
a, s


)
,

where ai, i = (, ) and si, i = (, ) are the means and the standard deviations of the
normal distributions, respectively. The values of the coefficients are affected by various
factors like temperature, host anatomy, environmental conditions etc. Random variables
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that are expected to be a sum of independent quantities often have a normal distribution.
Also, the central limit theorem states that, for large numbers of random variables whose
distributions are not known, a normal distribution can be used. Thus, considering we will
be simulating a large number of random numbers for the coefficients, the use of normal
distribution seems reasonable. The mean values of the distributions used for the coeffi-
cients will be chosen according to the deterministic values of the coefficients. Standard
deviations of the distributions will be % of the same value.

A N(a, b) distributed random variable X can be written as X = a+bχ , where χ ∼ N(, )
is the standard normally distributed random variable []. Using this property, random
variables can be rewritten as

βS = a + sχ, T = a + sχ, c = a + sχ, η̄ = a + sχ,

μ = a + sχ, σ = a + sχ, Emax = a + sχ, E = a + sχ,

βB = a + sχ, � = a + sχ, λ = a + sχ, α = a + sχ,

for independent random variables χi, i = (, ) with distribution N(, ). Setting the ap-
propriate values of ai, i = (, ) and si, i = (, ) yields

βS = . + .χ, T =  +  × χ, c = . + .χ,

η̄ = . + .χ, μ = – +  × –χ, σ = – +  × –χ,

Emax = . + .χ, E =  + .χ, βB =  + .χ,

� = . ×  +  × χ, λ =  × – +  × –χ, α =  + .χ.

Hence, in particular, we changed the deterministic parameter βB, which had a numerical
value , to a normally distributed random variable βB ∼ N(, .) with .% of its
values in the interval (., .). Using all of the similar transformed random parameters,
the random model of the antibiotic resistance thus becomes

dS
dt

= (. + .χ)S
(

 –
S + R

( +  × χ)

)
– (. + .χ)SB

– S
(. + .χ)A
( + .χ) + A

–
(
– +  × –χ

)
SA –

(
– +  × –χ

)
SR,

dR
dt

=
(
 – (. + .χ)

)
(. + .χ)R

(
 –

S + R
( +  × χ)

)

– (. + .χ)RB +
(
– +  × –χ

)
SA +

(
– +  × –χ

)
SR, ()

dB
dt

= ( + .χ)B
(

 –
B

(. ×  +  × χ)

)

–
(
 × – +  × –χ

)
B(S + R),

dA
dt

= –( + .χ)A.

3.1 Random results
Matlab produces random numbers according to the standard normal distribution with
the randn command. We simulate the numerical solutions of the random system using
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the fourth order Runge-Kutta method. We produce more than  simulations of the ran-
dom model. The characteristics of the random systems obtained by using these simula-
tions will be used to interpret the random behavior of the model. Note that although the
equations contain random numbers, a system of deterministic equations is obtained for
every simulation. The coefficients vary from simulation to simulation, but the equations
and therefore the derivatives are deterministic.

.. Solution curves
The solution curves obtained from the  simulations are shown in Figure . We select
an arbitrary realization from these simulations to investigate the dynamics of the random
event.

It should be noted that the solution curves of the random model indicate the behavior of
the system under random effects which are simulated for this study. These results may vary
for other simulations and hence they are only added to show the similar behavior of the
model components in the random and deterministic models. However, expected values,
variances and confidence intervals are valid for all possible occurrences of the random
event and therefore are more reliable indicators. Figure  shows that the behavior of the
random variables and the deterministic variables are compatible and hence our random
model is meaningful. The extremum values of the solution curves are obtained in Table .

.. Expected values
The expected values of the variables are shown in Figure .

The extremum values of the expected values are obtained in Table .

Figure 5 Solution curves of the random model.

Table 3 Extremum values of variables

Variable Maximum Time Minimum Time

S(t) 6,000 0 0.3081 1.5
R(t) 20.31 0.15 0.01054 1.5
B(t) 92.42 1.5 1 0
A(t) 4 0 0.002193 1.5
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Figure 6 Expectations of the random model.

Table 4 Extremum values of the expected values

Variable Maximum Time Minimum Time

E[S(t)] 6,000 0 0.3442 1.5
E[R(t)] 20.18 0.135 0.01376 1.5
E[B(t)] 91.59 1.5 1 0
E[A(t)] 4 0 0.002386 1.5

Figure  shows the expectations of the random variables. These expectations are approx-
imately valid for all possible trials of the event under the assumed random conditions. The
expected values are similar to the deterministic results, as expected.

.. Variances
The variances of the variables are shown in Figure .

The extremum values of the variances are obtained in Table .
Figure  shows the variance of the random variables. A high variance of the model com-

ponents show that some of the variables may produce significantly different behavior from
the suggestions of the deterministic results. Once again, the results for the variance are ap-
proximately valid for all trials.

.. Confidence intervals
The confidence intervals of the variables are shown in Figure .

Note that these are approximately % confidence intervals for the mean values of the
random variables which have the form

[
E
(
X(t)

)
– Kσ

(
X(t)

)
, E

(
X(t)

)
+ Kσ

(
X(t)

)]

for a random variable X with a standard deviation σ (X). Alternatively for K = , this inter-
val gives approximately % confidence interval. The blue lines in the graphs represent the
upper end of the intervals while the green lines represent the lower end. Figure  shows
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Figure 7 Variances of the random model.

Table 5 Extremum values of the variances

Variable Maximum Time Minimum Time

Var[S(t)] 18,740 0.105 0 0
Var[R(t)] 1.202 0.915 0 0
Var[B(t)] 447.6 1.5 0 0
Var[A(t)] 0.005509 0.195 0 0

Figure 8 Confidence intervals of the random model.

that there is a significantly large confidence interval for R(t) and B(t), meaning that these
variables have a high level of randomness in their nature. Also note that, while the simu-
lations tend to produce values below zero for populations, the smallest positive value has
been chosen for the minimum points.

The extremum values of the confidence intervals are obtained in Table .



Merdan et al. Advances in Difference Equations  (2017) 2017:133 Page 11 of 19

Table 6 Extremum values of the confidence intervals

Variable Maximum Time Minimum Time

CI[S(t)] 6,000 0 0.3442 1.5
CI[R(t)] 20.5 0.18 0.01376 1.5
CI[B(t)] 155.1 1.5 1 0
CI[A(t)] 4 0 6.083× 10–5 1.275

The random behavior of the components of the model can be seen in the graphs. It is
seen that the random behavior of the variables are similar to their deterministic behavior.
Although there are numerical differences in the solutions of the random system (), the
graphs of the solutions are almost the same. Considering the random results, it can be
said that the model produces the same results under random conditions, only at differ-
ent quantities. It should be noted that the simulations of the model are compatible with
the deterministic results and the real-life behavior of the components. The confidence
intervals are obtained by using the results for the variance and the expectations of the
components and may tend to provide negative results when the expectation of a variable
tends to zero. However, these should be neglected since the results for the subpopulations
of an epidemic model can only assume positive values [, ].

Deterministic results indicate that the population of resistant bacteria will reach its max-
imum value max(R(t)) = . at t = ., which is roughly about  hours after the start
of the process. Random results suggest that the rise in the number of resistant bacte-
ria is expected to continue a little longer until about . hours into the process, when
max(R(t)) = . will be obtained at t = .. On the other hand, deterministic results
and random results are quite similar in numerical values besides the behavior for the vari-
ables S(t), B(t) and A(t). S(t), the population of susceptible bacteria, decreases through-
out the process in both cases, though slower in the random model, reaching very similar
extremum values in both ends. Similarly, B(t), the population of immune cells, increases
throughout the process in both cases, reaching very similar extremum values at both ends.
A(t), the concentration of the antibiotic, also decreases through the process in both cases,
reaching very similar extremum values at both ends.

4 Stochastic model of antibiotic resistance
Random outcomes in real life can be modeled in equation systems by the use of stochastic
differential equations too. Their difference from random DEs is that stochastic differential
equations contain noise terms in terms of Wiener processes. Although these equations are
written as differential equations, they are interpreted as integral equations. In this study,
we will be interested in the numerical solutions of SDEs.

One of the simplest approximations of an Ito process is the Euler-Maruyama scheme.
Consider X = Xt , t ≤ t ≤ T satisfying the SDE on t ≤ t ≤ T with the initial value
Xt = X. For a discretization of the interval [t, T] as t = τ < · · · < τn < · · · < τN = T
(n = , , , . . . , N – ), the Euler-Maruyama approximation is a stochastic process Y = Yt ,
t ≤ t ≤ T satisfying the iterative scheme [, ]

Yn+ = Yn + a(τn, Yn)(τn+ – τn) + b(τn, Yn)(Wn+ – Wn).
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Another method that will be used is the Milstein scheme. The Milstein approximation is
a stochastic process Y = Yt , t ≤ t ≤ T satisfying the iterative scheme

Yn+ = Yn + a
 + b
W +



bb′(
W ),

where 
 = (τn+ – τn) []. The stochastic model of the antibiotic resistance can be given
as

dS
dt

=
(

βSS
(

 –
S + R

T

)
– η̄SB – S

EmaxA
E + A

– μSA – σSR
)

dt + γS(t) dWt,

dR
dt

=
(

( – c)βSR
(

 –
S + R

T

)
– η̄RB + μSA + σSR

)
dt + γR(t) dWt,

dB
dt

=
(

βBB
(

 –
B
�

)
– λB(S + R)

)
dt + γB(t) dWt,

dA
dt

= (–αA) dt + γA(t) dWt,

()

for independent Wiener processes Wi, i = (, ). Approximate numerical solutions of the
stochastic differential equations in model () are needed since the equations are nonlin-
ear and hence cannot be solved explicitly. Numerical solutions of the stochastic model are
analyzed for small diffusion with γi = ., i = (, ). A small amount of diffusion is added
to the models to indicate a small difference between the anticipated and the real-life re-
alizations of the event. A Milstein approximation is expected to produce more accurate
results compared to the Euler-Maruyama method, since the Milstein method has both a
weak and a strong order of convergence 
t, while the Euler method has a weak order of
convergence 
t but a strong order of convergence of only

√

t [].

4.1 Stochastic results
.. Euler-Maruyama
A realization of the approximate solutions of equation system () is given in Figure .
Similar to the random solutions, an arbitrary realization of the stochastic event is used to
analyze the stochastic dynamics of the model. The figure shows that while the stochas-
tic behaviors of the variables are similar to their deterministic and random counterparts,
the volatility in the variables R(t) and B(t) indicates the highly random nature of these
components.

The extremum values of the realizations are obtained in Table .

.. Milstein
A realization of the approximate solutions of equation system () is given in Figure .
Once again, the volatility in the variables R(t) and B(t) is significant.

The extremum values of the realizations are obtained in Table .
It can be seen that the expectations of the random model and the realizations of the

stochastic model produce similar patterns throughout the process. The similarity in the
results of these two models will be investigated in the next part.
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Figure 9 Realizations of the approximate solutions of the stochastic model.

Table 7 Extremum values of the realizations

Variable Maximum Time Minimum Time

S(t) 6,206 0.001 0.1078 1.5
R(t) 30.13 0.39 0.002046 1.5
B(t) 97.83 1.477 0.9254 0.008
A(t) 4 0 0.001317 1.499

Figure 10 Realizations of the approximate solutions of the stochastic model.

Table 8 Extremum values of the realizations

Variable Maximum Time Minimum Time

S(t) 6,000 0 1.229 1.5
R(t) 20.78 0.024 0.01164 1.5
B(t) 88.59 1.487 0.946 0.071
A(t) 4.114 0.001 0.0006289 1.475
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5 Comparison of random and stochastic results
Table  shows the extremum values obtained for the deterministic, random and stochastic
models. The results for the random model are the expectations. Results from the Milstein
approximation are used for the stochastic model.

Table  shows the impact of the random effects and stochastic noise on the extreme
values of the variables. While there are some numerical differences in some of the val-
ues, together with the graphs, it can be said that the stochastic and random models are
meaningful and successful in displaying the randomness of bacterial resistance.

In Figure , the random graph represents the results for the expectation of S(t), while
the stochastic results are from the Euler-Maruyama approximation. It can be seen that
the behavior of the total number of susceptible bacteria in the deterministic case is in
accordance with its behavior under normally distributed random effects and stochastic
noise. It should be noted that there seems to be a slower decrease in both random and
stochastic results, meaning that the number of susceptible bacteria should be expected to
decrease more slowly under random conditions.

In Figure , once again the random graph is from the expectations and the stochastic
graph is from the Euler-Maruyama approximation. It can be seen in the graphs that while
the increase in R(t) stops at t = . in the deterministic case at the value of ., this
increase should be expected to continue a while longer under random conditions until it
becomes . at t = .. Considering the behavior in the stochastic results, it can be said
that the population of resistant bacteria is expected to be similar in random cases.

Table 9 Extremum values in deterministic, random and stochastic models

Det. Max Rand. Max Stoch. Max Det. Min Rand. Min Stoch. Min

S (6,000, 0) (6,000, 0) (6,000, 0) (5.824, 1.09) (0.3442, 1.5) (1.229, 1.5)
R (20.16, 0.09) (20.18, 0.135) (20.78, 0.024) (0.004912, 1.5) (0.01376, 1.5) (0.01164, 1.5)
B (89.91, 1.5) (91.59, 1.5) (88.59, 1.487) (1, 0) (1, 0) (0.946, 0.071)
A (4.0) (4, 0) (4.114, 0.001) (0.002193, 1.5) (0.002386, 1.5) (0.0006289, 1.475)

Figure 11 Deterministic, random and stochastic results for S(t), respectively.
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Figure 12 Deterministic, random and stochastic results for R(t), respectively.

Figure 13 Deterministic, random and stochastic results for B(t), respectively.

Using Figure , it can be said that the results for the population of immune cells are
similar both in magnitudes and behavior in all three cases, meaning the immune cells
behave similarly under random conditions too.

Using Figure , it can be seen that the results for the concentration of antibiotic are
similar in all three cases as well, meaning that the antibiotic acts similarly under random
conditions too.

The similarity of the behaviors of susceptible bacteria populations in the random and
stochastic cases can be seen in Figure . The graphs show that there is little volatility in
the stochastic results until t = , which is the same time period that the confidence interval
grows a bit larger.

As seen in Figure , the stochastic and random cases for R(t), the population of resis-
tant bacteria is an indicator of the correspondence of these two models. There is a large
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Figure 14 Deterministic, random and stochastic results for A(t), respectively.

Figure 15 Stochastic volatility and confidence interval of S(t), respectively.

Figure 16 Stochastic volatility and confidence interval of R(t), respectively.

volatility in the stochastic results for R(t), which can also be seen in the graph for the con-
fidence interval of random results. A large confidence interval implies that large variations
in the results should be expected, as in the stochastic case.

The graphs for the confidence interval and volatility of B(t) are also compliant, as Fig-
ure  suggests. The % confidence interval of the expectation of the population of im-
mune cell grows large in the time period where there seems to be large volatility in the
stochastic case.
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Figure 17 Stochastic volatility and confidence interval of B(t), respectively.

Figure 18 Stochastic volatility and confidence interval of A(t), respectively.

In Figure , it can be seen that there is not much volatility in the results for the concen-
tration of antibiotic, which is compliant with a small confidence interval in the random
case.

6 Conclusion
In this study, the existing deterministic model for bacterial resistance with immune sys-
tem response and antibiotic therapy was used to form random and stochastic models of the
case. The parameters of the deterministic model are obtained from a statistical evaluation
of various bacterial resistance cases from around the world, but the deterministic analysis
neglects the randomness of these parameters and regards these quantities as stable val-
ues. Thus, by introducing Gaussian distributed random effect terms, we formed a random
equation system that models the real-life randomness of bacterial resistance. A random
analysis for the dynamics of the antibiotic resistance model is authentic and shows that,
even under small random effects, some of the components produce very unlikely results.
The comparison between the deterministic and random results shows a correspondence
between the behaviors of the models, while the random effects cause an inevitable differ-
ence in the random case, as expected. Although the standard deviations of the random
effects added to the parameters were % of their deterministic values, it can be seen from
the results that especially the population of resistant bacteria and the population of im-
mune cells are significantly affected from these variations. The immune cell population
size, B(t), gets its maximum expected value . at t = .. The maximum standard de-
viation of B(t) is estimated as . at t = . using the results of its variance. This value is
approximately .% of its expectation, meaning that under the assumed random condi-
tions, the immune cell population could vary at most about .% from its expectation, or
similarly from the estimations of the deterministic model, which neglects the randomness
of the event. Similarly, the population size of the resistant bacteria, R(t), gets a maximum
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standard deviation at t = . with an approximate value of .. On the other hand, R(t)
has an approximate expected value of . at t = .. Thus, the number of resistant bac-
teria could vary up to .% at the time of its maximum standard deviation. The amount
of randomness in these two variables can also be visualized from the confidence interval
graphs. Confidence interval graphs of % show the intervals within three standard devia-
tions from the expectation and a large interval for these two variables show that neglecting
the randomness in the model could result in seriously misleading information. A deviation
of % in the parameters of the random model causes a maximum of .% deviation for
B(t), .% maximum deviation for R(t), .% maximum deviation for S(t) and .%
maximum deviation for A(t). The significant deviations in B(t) and R(t) were also seen in
the stochastic graphs. The volatility in the realizations of the model under stochastic noise
is in correspondence with the confidence intervals of the random variables. For instance,
R(t) gets values between . and . in the time interval [., .], just as the %
confidence interval suggests.

The non-negligible deviation and volatility in the random and stochastic models show
that the deterministic analysis of bacterial resistance is incapable of modeling the real-life
randomness of the event. Our analysis shows that even with small random effects and
small diffusion coefficients, the populations of resistant bacteria and immune cells show
significant deviations from the deterministic results. The analyses in this study could be
continued by using various values for the parameters or various distributions for the ran-
dom effects. The magnitudes of the random effects or the diffusion coefficients of the
stochastic noise could also be altered to monitor the effects of these changes on the re-
sults. These suggestions provide a basis for new studies and these options for random
models will be evaluated in new papers. Hence, we believe this study will stimulate similar
random investigations of models from all areas of science.
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