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Angular distributions of protons scattered by 40Ar nuclei with excitation of
the 2+(1.46 MeV) and 3−(3.68 MeV) collective levels for
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Elastic and inelastic scattering of unpolarized and polarized protons by 40Ar nuclei for incident energies
between 20 and 50 MeV has been studied by reanalyzing experimental scattering spectra for the 2+(1.46 MeV)
and 3−(3.68 MeV) levels in the angular range 30◦–160◦ for incident protons of energies of 25.1, 32.5, and
40.7 MeV. An isospin dependent soft-rotator coupled-channels optical model with the potential containing a
dispersive term with a nonlocal contribution is used to analyze the data.

DOI: 10.1103/PhysRevC.75.034616 PACS number(s): 25.40.Ep, 21.10.Re, 24.10.Ht, 27.40.+z

I. INTRODUCTION

In the nucleon-nucleus interaction at low- to medium-
energy regions, the excitation of low-lying collective levels,
is one of the dominant reaction processes, determining the
high-energy portion of the inelastic spectra. It is therefore
essentially important to understand systematically underlying
reaction mechanisms that reflect the properties of these excited
states. Furthermore, it is also important from application points
of view because nucleon-induced reactions are utilized in many
applied fields such as nuclear energy (including transmutation
of nuclear wastes), radiation therapy, radiation-dose analysis
of aircraft pilots, and/or electronic devices due to air-shower,
and so on.

We have successfully applied a coupled-channels method
based on soft-rotator model (SRM-CC) for a number of nuclei
to describe simultaneously the collective level structure excita-
tion of them in nucleon-induced reactions and electromagnetic
transitions among them. Basically, the model, due to the
underlying physics, is expected to be applicable to rotational
nuclei. Nevertheless, we have seen so far that it can be quite

*Electronic address: nazmituran@superonline.com
†On leave from the Department of Physics, Faculty of Art and

Science, 19 Mayis University, Samsun, Turkey.

successfully applied also to so-called “vibrational” nuclei as
an “effective” model [1,2].

However, applicability of SRM-CC in a mass region below
A = 50 is still an open question although we have seen a good
success of it for 12C [3] and 28,30Si [4]. In this mass range, the
number of single-particle orbits is rather small and separation
of them is quite large. This indicates that shell effects, e.g.,
how nucleons are distributed among various single-particle
orbits and how they couple to determine the total spin, have a
large influence on the nature of the excited states. Under these
circumstances, it is not obvious at all if the SRM is effective
for these light nuclei, because the collective model, on which
SRM is based, is valid only when contributions of many shells
are accounted and averaged.

In case of 40Ar, it has a small quadrupole moment and a large
B(E2) value. This fact indicates that it is more like a vibrational
than a rotational nucleus. However, degeneracy of the 0+

2 , 2+
2 ,

and 4+
1 levels are broken to a significant extent, implying that

it is not a simple harmonic-vibrational type nucleus. In this
work, we tackle to describe the collective levels and nucleon-
induced reaction of 40Ar in terms of SRM-CC to investigate
how it works in light-mass region and to extract nuclear
parameters in SRM and optical model potentials (OMP) for
40Ar.

Elastic scattering of unpolarized and polarized protons by
40Ar nuclei in the incident energy region 20–50 MeV has been
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a subject of a number of studies already ( [5] and references
therein). In most of these studies experimental results are
used for the determination of the optical model potentials.
Almost all of the experimental scattering data available are
for elastic scattering. The only inelastic polarization results
are the data of Rush et al. [6] for incident protons of
30.4 and 49.4 MeV measured only for the first 2+

1 level at
1.46- MeV excitation. We have now reanalyzed our raw scat-
tering spectra [5] which were used before by us to determine
the elastic-scattering data, to make available data for the
2+(1.46 MeV) and negative-parity level 3−(3.68 MeV) in a
wide angular range. With this it became possible to analyze
the available data using a coupled-channels method. So the
main aim of this work is the determination and the analysis of
angular distributions of 25.1-, 32.5-, and 40.7- MeV incident
protons inelastically scattered populating the 2+(1.46 MeV)
and 3−(3.68MeV) levels of 40Ar, together with the elastic data
and available neutron total cross sections. Analysis of this data
is achieved using the dispersive soft-rotator coupled-channels
model to determine optical model potentials, allowing the
prediction of nucleon optical cross sections up to at least
100 MeV.

II. MEASUREMENT OF PROTON-40AR ANGULAR
DISTRIBUTIONS AT INCIDENT ENERGIES OF

25.1, 32.5, AND 40.7 MEV

A. Experimental setup and method

At the time of measurements of the elastic scattering
of polarized protons at 25.1, 32.5, and 40.7 MeV and the
appropriate analyzing powers [5], inelastic-scattering data
were also obtained for the 1.46-, 3.70-, and 4.49- MeV states of
40Ar with reasonable statistics. Protons with a polarization of
approximately 82% were accelerated to the desired energies
by the 88-inch cyclotron of Lawrence Berkeley Laboratory.
The target consisted of argon gas contained in a cell at
2 atm. Four sets of detector telescopes were used. The
telescopes were located symmetrically with respect to the
incoming beam so that measurements of analyzing power
could be made at two angles simultaneously. Each of the
telescopes comprised a 0.5-mm passing detector (�E) and
a stopping detector (E) with a total depletion depth of
8 mm. The �E-E systems were used for particle identification.
Collimators defined a geometry factor [7] of 3.0 × 10−6 cm.sr
and provided an angular resolution of ±0.5◦ (laboratory). The
beam polarimeter was downstream from the argon target and
consisted of a gaseous 4He target maintained at a pressure
of 2 atm. The protons elastically scattered by the 4He target
were detected by two telescopes positioned symmetrically with
respect to the beam at 77.5◦ at 25.1 MeV and 32.5 MeV
and at 120◦ at 40.7 MeV. The energy of the beam at the
polarimeter was degraded by aluminum foils to values at which
p−4He analyzing power calibration points exist [8](24.0,
32.2, and 39.8 MeV respectively). The polarization of the
beam was flipped automatically whenever a fixed charge was
accumulated in the Faraday cup (approximately once a second)
and the data were routed accordingly.
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FIG. 1. Typical proton spectra.

B. Data analysis and experimental results

A typical spectrum for 40Ar(p, p′)40Ar scattering at
25.1- MeV incoming proton energy is shown in Fig. 1. In the
analysis of the data, for each incoming proton energy, E, angle
θ , and excited state, the measured number of counts corrected
for background, N (θ ), was obtained. The differential cross
section was determined by using the formula for a gas target
given by:

dσ

d�
= N (θ )sinθ

R0nG
, (1)

where n is the number of incoming protons, R0 is the number
of scattering centers per unit volume, and G is the geometrical
factor of Silverstein for a gas target.

In the experiment also the scattering asymmetry ε(θ, E)
was measured for each of the excited states considered. The
asymmetry is calculated from the numbers of counts corrected
for background in the left and right telescopes for beam spin
up and down, namely from NLU, NRU, NLD, and NRD by using
the following relations.

ε(θ, E) = (r − 1) / (r + 1) (2)

with

r = [(NLUNRD) / (NLDNRU)]1/2 . (3)

The proton analyzing power Ay(θ, E) at each beam energy
and laboratory angle was calculated from the corresponding
asymmetry ε(θ, E) by the standard formula

Ay (θ, E) = ε(θ, E)/P, (4)

where P is the beam polarization.
Angular distributions for cross-sections and analyzing

powers of inelastically scattered protons at incident energies
of 25.1, 32.5, and 40.7 MeV with the associated statistical
errors are presented in Figs. 2–4, respectively. Systematic
errors in analyzing powers were minimized by using sym-
metrical detector telescopes on either side of the beam and
automatically flipping the beam polarization. Results of the
theoretical calculations are also shown in the figures, with the
details discussed in Sec. III.
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FIG. 2. Elastic angular distributions (left) and analyzing powers (right).

III. ANALYSIS USING COUPLED-CHANNELS BASED ON
THE SOFT-ROTATOR MODEL WITH DISPERSIVE

OPTICAL POTENTIAL FORMALISM

We used a coupled-channels optical model with coupling
based on soft-rotator nuclear model (SRM) wave functions
to analyze the scattering data. SRM used to build coupling
for coupled-channels optical model calculations is described
elsewhere [9] and is widely used for sophisticated optical
data analysis and cross-section predictions for nucleons (both
neutrons and protons simultaneously) interacting with nuclei
at least up to 200- MeV incident energies. Not long ago this
model was extended to use an optical potential with dispersion
relationships between the real and imaginary parts [10]. Such
extension of the model allows a significant reduction in the
number of optical potential parameters to be used for the
analyses, making them more physically grounded and thus
the results of such analyses are more reliable. We decided to
apply this optical potential model for our data analyses as it
was demonstrated by analyses of actinides [10] and tungsten
data [11] that such an approach is much more reliable.

As usual we assumed that the low-lying excited states ob-
served in even-even nonspherical 40Ar nuclei can be described
as a combination of rotation, β-quadrupole and octupole
vibrations, and γ -quadrupole vibrations. Nuclear Hamiltonian
parameters determining soft-rotator nuclear wave functions
were determined to describe low-lying collective levels of
40Ar. We could describe with reasonable accuracy eight levels
of 40Ar. A comparison of experimental level energies with
those predicted by the model with the Hamiltonian parameters
adjusted is shown in Fig. 5. Nuclear Hamiltonian parameters
producing high-quality fits to the 40Ar data are given in Table I.
For the meaning of the soft rotator nuclear model Hamiltonian
parameters and the theory see Ref. [12].

TABLE I. Nuclear Hamiltonian parameters of 40Ar.

h̄w0 = 1.1539 a42 = 0.03084 γ4 = 0.09777 γ0 = 0.51868
µβ20 = 2.0585 η = 0.00002 µε = 0.58029 δ4 = 0.69282

a32 = 0.02658 µγ0 = 0.1958 δn = 4.7885

034616-3
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FIG. 3. Inelastic angular dis-
tributions (left) and analyzing
powers (right) for proton scatter-
ing to the 2+ level of 40Ar.

Soft-rotator nuclear wave functions with the above parame-
ters describing low-lying collective levels of 40Ar were used to
build coupling for CC optical model calculations. The coupling
scheme used for the calculations is shown in Fig. 6. One can
see that each of eight levels was coupled to the ground state
level as well as with all the other levels coupled in these CC
optical model calculations.

The optical model potential used was taken to be a standard
Woods-Saxon form, but with account for the deformed nuclear
shapes. The general formulation used is described in Ref. [10].
Here we give only an overview.

The optical model potential is written as

V [r, R(θ ′, ϕ′), E]

= − [
VHF(E) + �V Coul

HF (E)
]
fWS[r, RHF(θ ′, ϕ′)]

− [
�Vv(E)+�V Coul

v (E) + iWv(E)
]
fWS[r, Rv(θ

′, ϕ′)]

− [
�Vs(E) + �V Coul

s (E) + iWs(E)
]
gWS [r, Rs(θ

′, ϕ′)]

+
(

h̄

mπc

)2

[Vso(E) + �Vso(E) + iW so(E)]

× 1

r

d

dr
fWS(r, Rso)(σ̂ · L̂) + VCoul[r, Rc(θ ′, ϕ′)], (5)

where the first term is the real smooth volume potential VHF(E)
and its corresponding Coulomb correction �V Coul

HF (E) =
−CCoul

ZZ′e2

A1/3
d

dE
[VHF(E)]. Similar Coulomb correction terms

�V Coul
v (E) and �V Coul

s (E) are also calculated for volume
�Vv(E) and surface �Vs(E) dispersive contributions to
the real potential. Successive complex-valued terms are the
volume, surface, and spin-orbit potentials, all containing the
corresponding dispersive contributions �Vv(E),�Vs(E), and
�Vso(E). The geometrical form factors are given as

fWS [r, Ri(θ
′, ϕ′)] = (1 + exp{[r − Ri(θ

′, ϕ′)]/ai})−1,

i = HF, v fWS (r, Rso) = {1 + exp[(r − Rso)/aso]}−1,

gWS [r, Rs(θ
′, ϕ′)] = −4as

d

dr
f [r, Rs(θ

′, ϕ′)] (6)

where Ri(θ ′, ϕ′) denotes the deformed radii with the defor-
mations considered, while spin-orbit potential is considered to
be not deformed. The Coulomb potential VCoul[r, Rc(θ ′, ϕ′)]
was calculated using a multipole expansion of a charged
ellipsoid with uniform charge density within the Coulomb
radius Rc and zero outside as suggested by Satchler et al. [13].
The spherical term of the Coulomb potential was calculated
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FIG. 4. Inelastic angular dis-
tributions (left) and analyzing
powers (right) for proton scatter-
ing to the 3− level of 40Ar.

by taking account of the diffuseness of the charge density
distribution of the form fc = [1 + exp(r − R0

c )/ac]−1 [3].
In our formulation of the OMP in Eq. (5) the geometrical

parameters of the Hartree-Fock (HF) potential rHF and aHF

are in general different from the geometrical parameters
rv, av, rs, as of the volume and surface absorptive potentials;
however, the real and imaginary spin-orbit terms share the
same rso and aso parameters. Therefore the volume dispersive
contribution has different geometry (determined by rv and av)
from the real smooth volume potential (determined by rHF and
aHF). As a result, we have two separate volume contributions
to the potential (as can be seen in the first and second line of
Eq. (5)), effectively giving us more flexibility than allowed by
the optical model potential used in our previous work [10].

It is known that the energy dependence of the depth VHF(E)
is due to the replacement of a microscopic nonlocal HF
potential by a local equivalent. For a Gaussian nonlocality,
VHF(E) is a linear function of E for large negative E and
is an exponential for large positive E. Following Mahaux
and Sartor [14], the energy dependence of the Hartree-Fock
part of the nuclear mean field is taken as that found by

Lipperheide [15]:

VHF(E) = AHFexp[ − λHF (E − EF )], (7)

where AHF and λHF are undetermined constants with the latter
associated with nuclear matter nonlocality range. Equation (7)
can be used to describe the HF potential in the scattering
regime [14]. The present optical potential includes relativistic
corrections as discussed by Elton [16] and explained in our
recent article [10].

It is useful to represent the variation of surface Ws(E)
and volume absorption potential Wv(E) depth with en-
ergy in functional forms suitable for the dispersive optical
model analysis. An energy dependence for the imaginary-
surface term has been suggested by Delaroche et al. [17]
to be:

Ws(E) = As

(E − EF )2

(E − EF )2 + (Bs)2 exp( − Cs |E − EF |), (8)

where As, Bs , and Cs are undetermined constants.
The isospin dependence of the potential (the Lane term

[18,19]) was considered in real VHF(E) and imaginary surface
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N. T. OKUMUŞOĞLU et al. PHYSICAL REVIEW C 75, 034616 (2007)

101
32

====τ ββγ nnn

02
32

====τ ββγ nnn

101
23

====τ ββγ nnn

01
32

====τ ββγ nnn

5-

3-

5

3

2

1

0

4

0+ 0+

Experimental Calculated

2+
2+

0+

0+

2+

2+

4+

4+

2+6+4+ 3-

1+
0+3- 1+4-4+ 1-2+ 5-

E
xc

ita
tio

n
E

ne
rg

y
(M

eV
)

2+

2+

FIG. 5. Comparison of experimental low-lying collective levels
of 40Ar with those predicted by SRM.

Ws(E) potentials as follows,

AHF = V0

[
1 + ( − 1)Z

′+1 Cviso

V0

N − Z

A

]
(9)

As = W0

[
1 + ( − 1)Z

′+1 Cwiso

W0

N − Z

A

]
(10)

where V0, Cviso,W0, and Cwiso are undetermined constants.
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2+
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FIG. 6. Level coupling scheme used in the present calculations.

An energy dependence for the imaginary volume term has
been suggested in studies of nuclear matter theory by Brown
and Rho [20]:

Wv(E) = Av

(E − EF )2

(E − EF )2 + (Bv)2 , (11)

where Av and Bv are undetermined constants. The assumption
that the imaginary potential Wv(E) is symmetric about E′ =
EF is plausible for small values of |E′ − EF |; however, as
was pointed out by Mahaux and Sartor [14], this approximate
symmetry no longer holds for large values of |E′ − EF |.
In fact the influence of the nonlocality of the imaginary
part of the microscopic mean field will produce an increase
of the empirical imaginary part W (r, E′) at large positive
E′ and approaches zero at large negative E′ [21,22]. The
DOM analysis of neutron scattering on 27Al [23] and 232Th
[10] showed the importance of the dispersive contribution
to describe σT data for energies above 100 MeV using a
nonsymmetric version of the volume absorptive potential for
large positive and large negative energies. Following Mahaux
and Sartor [14], we assume that the absorption strengths are
modified only outside some fixed energy interval around the
Fermi energy [EF −Ea,EF +Ea]. They used Ea = 60 MeV;
however, this value is fairly arbitrary [14] and we will use it as
a fitting parameter. Let us assume that the nonlocal imaginary
potential to be used in the dispersive integral is denoted by
W̃ v(E); then we can write [24]

W̃ v(E) = Wv(E) − Wv(E)
(EF − E − Ea)2

(EF − E − Ea)2 + E2
a

,

for E<EF − Ea (12)

and

W̃ v(E) = Wv(E) + α

[√
E + (EF + Ea)3/2

2E

− 3

2

√
(EF + Ea)

]
, for E > EF + Ea. (13)

These functional forms are chosen in such a way that the
function and its first derivative are continuous at E′ =
|EF −Ea|. At large positive energies nucleons sense the “hard
core” repulsive region of the nucleon-nucleon interaction and
W̃ v(E) diverges like α

√
E. Using a model of a dilute Fermi gas

hard-sphere the coefficient α can be estimated to be equal to
1.65 MeV1/2 [22], assuming that the Fermi impulse kF is equal
to 1.36 fm−1 and the radius of the repulsive hard core is equal to
0.4 fm. On the contrary, at large negative energies the volume
absorption decreases and goes asymptotically to zero.

In a dispersion relation treatment, the real potential strength
consists of a term which varies slowly with energy, the
so-called Hartree-Fock term, VHF(r, E), plus a correction term,
�V (r, E), which is calculated using a dispersion relation.
Under favorable conditions of analyticity in the complex E

plane the real part �V can be constructed from the knowledge
of the imaginary part W on the real axis through the dispersion
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relation

�V (r, E) = P
π

∫ ∞

−∞

W (r, E′)
E′ − E

dE′ , (14)

where we have now explicitly indicated the radial and energy
dependence of these quantities and P means that the principal
value of the integral should be taken. To simplify the problem,
the geometry of the imaginary terms of the OMP are usually
assumed to be energy independent and they are expressed
in terms of a Woods-Saxon function fWS [r, Ri(θ ′, ϕ′)] or its
derivative gWS [r, Ri(θ ′, ϕ′)]. In such a case the radial functions
factorize out of the integrals and the energy dependence
is completely accounted for by two overall multiplicative
strengths, �V (E) and W (E). Both of these factors contain,
we note, volume and surface contributions. The dispersive
treatment employed in this work to calculate dispersive
contributions �Vv(E),�Vs(E), and �Vso(E) was described
in detail in Ref. [10], so we refer interested readers to that
contribution.

IV. ANALYSIS OF EXPERIMENTAL DATA

Experimentally determined inelastic-scattering data for
2+(1.46 MeV) and 3−(3.68 MeV) level excitations for the
three incident proton energies along with the elastic-scattering
data for these energies [5] were analyzed simultaneously
with the neutron total cross sections to get a unique 40Ar-
nucleon (neutron-proton differences in the optical potential
are described by its isospin dependence, Eq. (9)) optical
potential in the 1- to 100- MeV energy region. The optical
potential parameters were searched to reproduce the neutron
and proton cross-section data by minimizing the quantity χ2

defined by

χ2 = 1

N + M

[
N∑

i=1

1

Ki

Ki∑
j=1

(
dσij /d�calc − dσij /d�exp

�dσij /d�exp

)2

+
M∑
i=1

(
σtotcali

− σtotevali

�σtotevali

)2
]

(15)

where dσij /d�exp and dσij /d�calc are experimental and cal-
culated angular distribution data, whereas σtotevali

and σtotcali
are

measured and evaluated total cross sections all with their
assigned errors. N denotes the number of experimental
scattering data sets, Ki the number of angular points in each
scattering data set, and M the number of energies for which
experimental (evaluated) neutron total cross section data are
involved.

The optical model code OPTMAN [9,25] was used for
OMP parameter fitting. We used symmetric surface and non-
symmetric volume imaginary absorptive potentials, therefore
we initially adjusted 16 parameters, namely V0, λHF , Cviso,
which define the smooth energy dependence of the real
volume potential; W0, Cwiso, Bs, Cs and Av,Bv,Ea defining
the surface and volume absorptive potential, respectively,
plus six geometrical parameters (rHF, aHF, rv, av, rs, as). After
proper values were obtained by this global minimization,
spin-orbit parameters Vso, λso, Aso, Bso, rso and aso, parameters
of the Coulomb interaction, CCoul, rc, and ac and equilibrium
deformation parameters βλ0 (λ = 2, 3, 4 for quadrupole,
octupole, and hexadecapole deformations accordingly) were
also optimized. The final iteration involved a free variation of
all parameters using the best-fit search option of the OPTMAN
code. The derived dispersive CCOMP (DCCOMP) potential
parameters are listed in Table II. The attained minimum χ2

value, as defined by Eq. (15), was 2.7.

V. RESULTS AND DISCUSSION

As shown in Table I, the softness of the 40Ar nucleus to
quadrupole deformations, µβ20 , is found to be rather large,
namely 2.0585. Typical rotational nuclei such as actinides
have µβ20 values of 0.1 to 0.3 [26], and 56Fe has a value
of about 0.5 [27]. The larger µβ20 signifies that a nucleus is
soft to quadrupole deformation. This leads to a significant
enhancement of coupling strength between the levels. For
instance, the “effective” quadrupole deformation determining
one step excitation of the first 2+ level is enhanced by
a factor of 2.75 compared with the rigid case having the
same equilibrium-quadrupole deformation β20. In the present
example, the ground-state quadrupole deformation was found

TABLE II. Dispersive coupled-channel OMP parameters for 40Ar. We used the following
deformation parameters: β20 = 0.0805, β4 = 0.312, β30 = β20ε = 0.11135 for 40Ar.

Volume Surface Spin-orbit Coulomb

Real depth V0 = 53.24 Vso = 6.33 CCoul = 2.00
(MeV) λHF = 0.00978 dispersive λso = 0.005

Cviso = 8.0
Imaginary depth Av = 9.15 W0 = 10.75 Wso = −3.1
(MeV) Bv = 81.82 Bs = 12.56 Bso = 160

Ea = 132.0 Cs = 0.01035
Cwiso = 21.0

Geometry rHF = 1.2223 rs = 1.1686 rso = 1.1293 rc = 1.0614
(fm) aHF = 0.637 as = 0.528 aso = 0.586 ac = 0.638

rv = 1.0971
av = 0.734
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FIG. 7. Comparison of predicted and experimental 40Ar neutron
total cross sections. Experimental data from EXFOR are shown by
various symbols.

to be 0.0805, but the effective value is enhanced to a value of
0.22. This value is in close agreement with the β2 determined
from B(E2) [28]. Similarly, enhancement of the coupling
between the ground state and the 3− state is 2.778, giving the
effective β3 to be 0.11135 × 2.778 = 0.309. This is favorably
compared with the value of 0.31 deduced from B(E3) data
[29]. Therefore, the SRM effectively gives a reasonable picture
that 40Ar has a small static but a large dynamic deformation,
which means that this nucleus is more like a vibrational than a
rotational one. It will be worth noting that such enhancements
are radically different for different pairs of levels.

Optical model calculations with the best fit parameters
listed in Table II nicely describe available experimental 40Ar
neutron total data from about 1- to 100- MeV incident energies,
as seen in Fig. 7.
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Comparison of our experimentally measured 40Ar angular
distributions with those predicted by the DCCOM calculations
using the best fit potential is shown in Figs. 2–4. One can
see that DCCOMP describes scattering data measured, yet
the description of the fine angular structure is not as good,
perhaps due to uncertainties in separating elastic and inelastic
peaks. Theoretical predictions of analyzing powers, shown
on the right sides of Figs. 2–4, show much better agreement
with experiment. As the OPTMAN code has no option to
calculate analyzing powers, the ECIS code [30], with three
levels coupled, using our best fit optical parameters, was used
for such calculations. In Figs. 8–10 our experimental data are
shown along with other proton angular distributions available
in this energy region. One can that see our experimental data
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FIG. 10. Available 3− experimental inelastic angular distributions
compared with DCCOMP predictions.
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are consistent with the other proton-scattering data, so that the
best fit potential determined with DCCOMP can describe all
of the data simultaneously.

The derived optical potential energy dependence is very
simple. We do not need to introduce energy-dependent geom-
etry and the potential parameters are commonly applicable for
both neutron and proton projectiles. The dispersion relations,
coupled to the smooth energy-dependent Hartree-Fock poten-
tial VHF(E), fully determine the real part of the dispersive
contribution once the imaginary part of the mean field is
fixed. Very few parameters are required in comparison with
a conventional nondispersive coupled-channel OMP analysis.

VI. CONCLUSIONS

We have applied the SRM-CC (a coupled-channels method
based on the coupling built on soft-rotator model wave
functions) to analyze the low-lying collective level structure
and nucleon interaction with 40Ar. The description of the
collective levels by the present model turned out to be in
a reasonable success, giving that this nucleus is soft to
quadrupole and octupole deformations. This picture is con-
sistent with the fact that it has a small ground-state quadrupole
moment, but the collective levels are excited quite strongly;
namely it is a vibrational-like nucleus. In fact, our approach
yielded a small equilibrium deformations but large dynamical
deformations due to softness of both the quadrupole and
octupole deformations.

In this work we have presented new experimental data
for protons with incident energies of 25.1, 32.5, and
40.7 MeV scattered by 40Ar nuclei elastically and inelasti-
cally, exciting the 2+(1.46-MeV) and 3−(3.68-MeV) levels.
The use of these high-energy proton-scattering data along

with neutron total cross-section data simultaneously in a
dispersive isospin-dependent “relativistic” coupled-channels
optical model analysis of nucleon scattering on 40Ar nuclei
from 1 to 100 MeV made it possible to increase the ac-
curacy of estimated optical potential parameters, especially
in the high-energy region. Good overall agreement obtained
between predictions and experimental data became possi-
ble due to including dispersive terms and accounting for
nonlocality effects in the optical model potential and CC
calculations.

The isovector terms give the possibility to extend the
derived potential parameters to neighboring nuclei with
great confidence. The resulting data have been forwarded to
the international experimental data base EXFOR (EXFOR
#C1329004. For the elastic scattering data submitted previ-
ously see EXFOR #C1329003).
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[21] C. Mahaux and H. Ngô, Nucl. Phys. A431, 486 (1984).
[22] C. Mahaux and R. Sartor, Nucl. Phys. A458, 25

(1986).
[23] A. Molina, R. Capote, J. M. Quesada, and M. Lozano, Phys.

Rev. C 65, 034616 (2002).
[24] C. Mahaux and R. Sarto, Advances in Nuclear Physics, edited

by J. W. Negele and E. Vogt (Plenum, New York, 1991),
Vol. 20.

034616-9
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