Turkish Journal of Chemistry

Volume 37 | Number 2

Article 5

1-1-2013

Antimicrobial activity and chemical composition of the essential oils of mosses (Hylocomium splendens (Hedw.) Schimp. and Leucodon sciuroides (Hedw.) Schwägr.) growing in Turkey

TAYYİBE BEYZA CANSU

BÜŞRA YAYLI

TURAN ÖZDEMİR

NEVZAT BATAN

ŞENGÜL ALPAY KARAOĞLU

See next page for additional authors

Follow this and additional works at: https://journals.tubitak.gov.tr/chem

Part of the Chemistry Commons

Recommended Citation

CANSU, TAYYİBE BEYZA; YAYLI, BÜŞRA; ÖZDEMİR, TURAN; BATAN, NEVZAT; KARAOĞLU, ŞENGÜL ALPAY; and YAYLI, NURETTİN (2013) "Antimicrobial activity and chemical composition of the essential oils of mosses (Hylocomium splendens (Hedw.) Schimp. and Leucodon sciuroides (Hedw.) Schwägr.) growing in Turkey," *Turkish Journal of Chemistry*: Vol. 37: No. 2, Article 5. https://doi.org/10.3906/kim-1204-72

Available at: https://journals.tubitak.gov.tr/chem/vol37/iss2/5

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Chemistry by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.

Antimicrobial activity and chemical composition of the essential oils of mosses (Hylocomium splendens (Hedw.) Schimp. and Leucodon sciuroides (Hedw.) Schwägr.) growing in Turkey

Authors

TAYYİBE BEYZA CANSU, BÜŞRA YAYLI, TURAN ÖZDEMİR, NEVZAT BATAN, ŞENGÜL ALPAY KARAOĞLU, and NURETTİN YAYLI

Turkish Journal of Chemistry http://journals.tubitak.gov.tr/chem/

Antimicrobial activity and chemical composition of the essential oils of mosses (*Hylocomium splendens* (Hedw.) Schimp. and *Leucodon sciuroides* (Hedw.) Schwägr.) growing in Turkey

Tayyibe Beyza CANSU¹, Büşra YAYLI¹, Turan ÖZDEMİR², Nevzat BATAN², Şengül ALPAY KARAOĞLU³, Nurettin YAYLI^{1,4,*}

¹Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey ²Department of Biology, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey ³Department of Biology, Faculty of Arts and Sciences, Rize University, 53100 Rize, Turkey ⁴Faculty of Pharmacy, Karadeniz Technical University, 61080 Trabzon, Turkey

Received: 26.04.2012	٠	Accepted: 20.12.2012	٠	Published Online: 17.04.2013	•	Printed: 13.05.2013
-----------------------------	---	----------------------	---	------------------------------	---	----------------------------

Abstract: In the present work, the volatiles of mosses [Hylocomium splendens (Hedw.) Schimp. (Hylocomiaceae) and Leucodon sciuroides (Hedw.) Schwägr. (Leucodontaceae)] have been investigated by GC-FID and GC/MS. Fifty-eight compounds in the oil of *H. splendens*, representing 75.4%, and 41 compounds in the oil of *L. sciuroides*, representing 87.6%, were identified. The major components were found to be β -pinene (11.6%) and α -pinene (8.9%) in the oil of *H. splendens* was rich in monoterpenes (30.8%), and aldehydes (49.9%) were the major constituents in the oil of *L. sciuroides*. The antimicrobial activities of the isolated essential oils of the mosses were also investigated. The essential oil of *H. splendens* showed antibacterial activities against *Escherichia coli*, Yersinia pseudotuberculosis, Staphylococcus aureus, Enterococcus faecalis, Bacillus cereus, Mycobacterium smegmatis, and the fungus Candida albicans with minimum inhibition concentrations in the range of 428–857 µg/mL, respectively. The oil of *L. sciuroides* only showed activity against fungus *C. albicans* (711 µg/mL).

Key words: Hylocomium splendens, Leucodon sciuroides, essential oils, GC-FID, GC-MS

1. Introduction

Essential oils and their constituents are widely used in cosmetics as fragrances, in medicine as parts of different medical products, and in the food industry as flavoring additives.¹ The essential oils of mosses generate a pleasant, sometimes distinct smell in the fresh state and have been used as traditional medicines.²⁻⁴ There are approximately 25,000 taxa of mosses around the world.⁵⁻⁸ The genera of *Hylocomium* and *Leucodon* are represented by 1 and 4 taxa^{12,13}, respectively, in Turkey. Essential oils of mosses contain a great variety of volatile metabolites, which are mainly mono-, sesqui- and diterpenes, and, in addition, various aliphatic metabolites.⁹⁻¹⁵ To our knowledge, there are no previous reports on the chemical composition and antimicrobial activity of the essential oils of *H. splendens* and *L. sciuroides*, although the antibacterial activity of the solvent extracts of *H. splendens* and *L. sciuroides* were mentioned and showed moderate activities.^{16,17} Therefore, the objective of the present study was to examine the chemical composition of the essential oils of *H. splendens*

^{*}Correspondence: yayli@ktu.edu.tr

and *L. sciuroides* by gas chromatography–mass spectrometry $(GC-MS)^{9-15,18}$ as well as to evaluate the antimicrobial activities of the essential oils.

2. Experimental

Hylocomium splendens (Hedw.) Schimp. was collected from Borçka, Artvin, Turkey (at a height of approximately 293 m), in May 2011. *Leucodon sciuroides* (Hedw.) Schwägr. was collected from Yusufeli, Çıralı, Artvin, Turkey (at a height of approximately 1524 m), in May 2011. The mosses were authenticated by Associate Professor T. Özdemir immediately after collection.^{6,7} Voucher specimens were deposited in the herbarium of the Department of Biology (Özdemir and Batan 1501 and Özdemir and Batan 1502, respectively), Karadeniz Technical University, Turkey.

2.1. Isolation of the essential oils

The fresh plant materials were separated and cut into small pieces. Crude essential oils of *H. splendens* and *L. sciuroides* were obtained from the fresh mosses (approximately 55 g each) by hydrodistillation in a modified Clevenger-type apparatus with a cooling bath ($-12 \degree C$) system (4 h) (yields: 0.1% and 0.95% (v/w), respectively). The obtained oils were dissolved in n-hexane (0.5 mL, HPLC grade), dried over anhydrous sodium sulfate, and stored at $4-6 \degree C$ in a sealed brown vial. One microliter of the essential oils was directly injected separately into gas chromatography-flame ionization detector (GC-FID) and GC-MS instruments.

2.2. Gas chromatography

The capillary GC-FID analysis was performed using an Agilent-5973 Network System equipped with a FID (supplied with air and hydrogen of high purity) and a split inlet. The chromatographic column used for the analysis was an HP-5 capillary column (30 m \times 0.32 mm i.d., film thickness 0.25 μ m). Helium was used as the carrier gas at a flow rate of 1 mL/min. The injections were performed in splitless mode at 230 °C. Two microliters of essential oil solution in hexane was injected and analyzed, with the column held initially at 60 °C for 2 min and then increased to 240 °C with a 3 °C/min heating ramp. The identity of each compound was supported by comparing their retention indices (RIs) with published values.^{9–15} The sample was analyzed twice and the percentage composition of oil was computed from the GC peak areas without using correction factors.

2.3. Gas chromatography-mass spectrometry

GC-MS analysis was performed using an Agilent-5973 Network System. A mass spectrometer with an ion trap detector in full scan mode under electron impact ionization (70 eV) was used. The chromatographic column used for the analysis was an HP-5 capillary column (30 m \times 0.32 mm i.d., film thickness 0.25 μ m). Helium was used as the carrier gas at a flow rate of 1 mL/min. The injections were performed in splitless mode at 230 °C. Two microliters of essential oil solution in hexane was injected and analyzed, with the column held initially at 60 °C for 2 min and then increased to 240 °C with a 3 °C/min heating ramp.

2.4. Identification of components

RIs of all compounds were determined by the Kovats method using n-alkanes (C₆-C₃₂) as standards. Identification of individual components was made by comparison of their retention times with those of available analytical standards (α -pinene, camphene, β -pinene, limonene, borneol, pulegone, n-tetradecane, n-heptadecane, n-nonadecane, n-eicosane, n-heneicosane, n-docosane, n-tricosane, n-tetracosane, and n-pentacosane purchased from Merck and Sigma) and by computer search, matching mass spectral data with those held in the NIST and Wiley library of mass spectra and literature comparison.^{11-15,18} Component relative concentrations were obtained directly from GC peak areas obtained with GC-FID.

2.5. Antimicrobial activity

All test microorganisms were as follows: Escherichia coli ATCC 25922, Yersinia pseudotuberculosis ATCC 911, Pseudomonas aeruginosa ATCC 43288, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Bacillus cereus 702 Roma, Mycobacterium smegmatis ATCC 607, and Candida albicans ATCC 60193. All extracts were weighed and dissolved in hexane to prepare extract stock solution of between 45,000 and 46,000 μ g/mL. The antimicrobial effects of the substances were tested quantitatively in respective broth media by using double microdilution and the minimal inhibition concentration (MIC) values (μ g/mL) were determined.¹⁹ The antibacterial and antifungal assays were performed in Mueller-Hinton broth or Tween 20 (Difco, Detroit, MI, USA) at pH 7.3 and buffered in yeast nitrogen base or Tween 20 (Difco) at pH 7.0, respectively. The microdilution test plates were incubated for 18–24 h at 35 °C. Brain heart infusion broth (Difco) was used for *M. smegmatis*, incubated for 48–72 h at 35 °C.²⁰ The MIC was defined as the lowest concentration that showed no growth. Ampicillin (10,000 μ g/mL), streptomycin (10,000 μ g/mL), and fluconazole (2000 μ g/mL) were used as standard antibacterial and antifungal drugs, respectively. Hexane with dilution of 1:10 was used as the solvent control.

3. Results and discussion

The mosses (*H. splendens* and *L. sciuroides*) were collected at different locations in Artvin, Turkey. Before extraction, the mosses were carefully inspected for contaminations. Other plant material, conifer needles, and soil were completely removed. The essential oils of the mosses (*H. splendens* and *L. sciuroides*) were obtained by hydrodistillation method using a modified Clevenger-type apparatus. The obtained crude essential oils were then investigated by GC-FID and GC-MS techniques.^{9-15,18} The RIs, percentages, and chemical compositions of the essential oils of *H. splendens* and *L. sciuroides* are listed in the Table.

Fifty-eight components were identified from the oil of *H. splendens*, representing 75.4% of the total oil, and the major compounds were β -pinene, α -pinene, limonene, camphene, and heptadecene. n-Nonanal, heptanal, tetradecanol, eicosane, and octanal were the main compounds of *L. sciuroides* out of 41 components, representing 87.6% of the total oil.

The volatiles of most mosses are abundant in terpenes, aliphatic and aromatic aldehydes (α - and β pinene, camphene, p-cymene, n-heptanal, benaldehyde, n-nonanal, E,E-2,4-decadienal, E,Z-2,4-decadienal, benzaldehyde, E,E-2,4-nonadienal, phenylacetaldehyde, undecanal, etc.), aliphatic alcohols and ketones (decanol, tetradecanol, hexadecanol, 3-octanone, etc.), and hydrocarbons (C₁₄-C₂₅, saturated).^{9-15,18} In addition, a great variety of terpenoid compounds were detected. Some of them could be readily identified by their characteristic mass spectra and seem to be almost ubiquitous in mosses.¹²⁻¹⁵ Very common volatile constituents of the essential oils of moss are α - and β -pinene, camphene, Δ -3-carene, sabinene, myrcene, camphor, limonene, p-cymene, α -terpinene, and γ -terpinene, as well as borneol, bornylacetate, terpinen-4-ol, α -terpineol, pinocarvone, safranal, pulegone, carveol, longicyclene, and α -terpinylacetate.⁹⁻¹⁵ We also observed the similar terpenes, aliphatic aldehydes, and hydrocarbons in the oils of mosses (Table). In the essential oil of *L. sciuroides*, n-nonanal (26.8%) was found to be the major compound, which could be of use as a marker.

CANSU et al./Turk J Chem

No.	Compounds	A	В	Exp.	Lit.
110.	-	% Area ^a	% Area ^a	RI^{b}	RI
	Monoterpenes				
1	Tricyclene	0.5	-	925	927
2	α -Pinene ^c	8.9	0.5	936	939
3	Camphene ^{c}	4.2	-	950	954
4	$\Delta - 3$ -Carene	-	0.8	975	979
5	β –Pinene ^c	11.6	-	976	978
6	α -Phellandrene	0.6	-	1005	1003
7	Limonene ^c	4.7	-	1027	1029
8	p-Cymene	0.3	-	1089	1091
	Monoterpenoids				
9	α -Campholenal	0.3	-	1125	1126
10	Nopinone	0.3	-	1138	1140
11	Camphor	0.8	-	1144	1146
12	Pinocarvone	1.5	-	1161	1165
13	$Borneol^c$	0.6	-	1167	1169
14	α -Terpineol	2.1	-	1186	1189
15	Safranal	0.6	-	1196	1197
16	$Pulegone^{c}$	0.2	-	1212	1215
17	β -Cyclocitral	-	0.3	1219	1221
18	Carveol	0.2	-	1232	1229
19	Perilla aldehyde	0.3	-	1268	1272
	Sesquiterpenes				
20	Presilphiperfol-7-ene	-	0.4	1333	1337
21	Longipinene	0.4	-	1356	1353
22	Longicyclene	0.3	-	1376	1374
23	Panasinsene	0.9	-	1385	1383
24	β -Elemene	-	0.2	1388	1391
25	$cis-\alpha$ -Bergamotene	0.6	-	1417	1413
26	E-Caryophyllene	0.2	-	1422	1419
27	α -Guaiene	-	0.3	1443	1440
28	cis-Muurola-3,5-diene	0.2	-	1446	1450
29	trans- Muurola-3,5-diene		0.3	1460	1460
30	Ishwarane	0.2	-	1463	1467
31	γ -Muurolene	0.3	-	1479	1480
32	trans-Cadina- $(1,6)$ 4- diene	0.3	-	1481	1477
	Sesquiterpenoids				
33	Caryophyllene oxide	0.8		1579	1583
34	Isolongifolonone	0.4		1613	1613
35	1,10-di-epi-Cubenol	0.2		1622	1619
36	(E)-2-hexylcinnamaldehyde	0.6	0.4	1748	1750
	Diterpene				
37	Kaurene-15	-	0.9	1996	1998
	Diterpenoids				
38	Manool	0.9	-	2055	2057
	Terpenoid-related				
39	3-neo-iso-Thujyl acetate	3.3	-	1275	1276

Table. Identified components in the essential oils of *H. splendens* and *L. sciuroides*.

No.	Compounds	$\frac{A}{\% \text{ Area}^a}$	\mathbf{B} % Area ^a	Exp. RI^b	Lit. RI
40	cis-Jasmone	70 Alea	0.9	1392	1391
40	Vestitenone	0.7	0.9	1392 1450	1391
41 42	Ionone epoxide	0.1	0.5	1450 1456	1447
42	β –Ionone		0.5	1430 1487	1434
43	β –10hone Hexahydrofarnesyl acetone	3.0	3.3	1487	1835
44	Hydrocarbons	3.0	0.0	1652	1000
45	Tetradecane ^c		0.4	1398	1400
40	Heptadecene ^c	- 3.4	-	1696	1699
40	Nonadecane ^c	1.8	-	1904	1900
47	Eicosane ^c	1.6	4.6	2001	2000
	Heneicosane ^{c}			2102	
49 50	Docosane ^c	1.1 1.7	0.5	2102 2200	2100
					2200
51 52	Tricosane ^c	1.1	2.0	2301	2300
	Tetracosane ^c	0.3	0.7	2400	2400
53	Pentacosane ^c	0.7	1.7	2500	2500
50	Aldehyde	1.0	19.7	004	902
53	Heptanal	1.2	13.7	904	902 960
54	Benzaldehyde	-	1.4	962	
55	Octanal	-	2.6	998	999
56	Benzene acetaldehyde	0.8	1.1	1043	1042
55	Octenal	1.2	0.6	1056	1055
56	Nonanal	1.5	26.8	1104	1101
57	(2E)-Nonenal	-	0.5	1160	1162
58	(2E,4E)-Nonadienal	0.2	-	1213	1215
59	Decanal	-	1.3	1199	1202
60	(2Z)-Decenal	-	0.2	1262	1264
61	(2E)-Decenal	0.7	-	1264	1264
62	(2E,4E)-Decadienal	0.7	-	1291	1293
63 64	Undecanal	0.2	1.2	1305	1307
04	(2E,4Z)-Decadienal	1.4	0.5	1314	1317
65	Others 3-Octanone	1.0	2.3	0.024	084
				984	984
66	2-Pentylfuran	1.6	2.3	989	993
67 68	Acetophenone	0.1	-	1067	1065
68 60	Decanol	-	0.4	1193	1197
69 70	Benzophenone	-	0.8	1269	1270
70	3-Dodecanone	0.3	-	1388	1391
71	Dodecanol	-	0.3	1471	1471
72	Tridecanol	-	1.7	1576	1572
73	Tetradecanol	0.2	8.5	1675	1673
74	1-Methoxy, 4-(2-phenylethyl)benzene	-	0.4	1755	1755
75	Pentadecanol	-	0.4	1779	1776
77	Hexadecanol	1.3	0.5	1877	1876
78	Octadecanol	0.3	-	2080	2078

No.	Compounds	А	В	Exp.	Lit.
INO.		% Area ^a	% Area ^a	RI^{b}	RI
				N.C.	
	Monoterpenes	30.8	1.3	7	2
	Monoterpenoids	6.9	0.3	10	1
	Sesquiterpenes	3.4	1.2	9	4
	Sesquiterpenoids	2.0	0.4	4	1
	Diterpene	-	0.9	-	1
	Diterpenoids	0.9	-	1	0
	Terpenoid-related	7.0	5.2	3	4
	Hydrocarbons	11.7	10.8	8	7
	Aldehydes	7.9	49.9	9	11
	Others	4.8	17.6	7	10
	Total isolate	75.4%	87.6%	58	41

Table. Continued.

A: Hylocomium splendens, B: Leucodon sciuroides.

 $^a\%$ Area obtained by FID peak-area normalization.

 b RI calculated from retention times relative to that of n-alkanes (C₆-C₃₂) on the nonpolar HP-5 column.

N.C.: Number of compounds.

^cIdentified by authentic samples.

The qualitative and quantitative determination of essential oil of *H. splendens* and *L. sciuroides* showed that monoterpenes (30.8%) were major constituents in the oil of *H. splendens* and aldehydes (49.9%) were the main components in the oil of *L. sciuroides*. Generally, the number of volatile compounds present in the oil of *H. splendens* is greater than that in *L. sciuroides*. In the literature⁹⁻¹⁵, chemical profiles of the essential oils of the mosses showed large differences, as in our case, which can be explained by the locality, climatic conditions, and the subspecies of the plant used.

The antimicrobial activities of the isolated essential oils were tested quantitatively in respective broth media by using double dilution and the MIC values $(\mu g/mL)^{19,20}$ of 8 microorganisms (*E. coli*, *Y. pseudotuberculosis*, *P. aeruginosa*, *S. aureus*, *E. faecalis*, *B. cereus*, *M. smegmatis*, and *C. albicans*). The essential oil of *H. splendens* showed moderate antibacterial activities against *E. coli*, *Y. pseudotuberculosis*, *S. aureus*, *E. faecalis*, *B. cereus*, *M. smegmatis*, and *C. albicans*). The essential oil of *H. splendens* showed moderate antibacterial activities against *E. coli*, *Y. pseudotuberculosis*, *S. aureus*, *E. faecalis*, *B. cereus*, *M. smegmatis*, and *C. albicans* with MICs in the range of 428–857 μ g/mL, but no antimicrobial activity was observed against the bacteria *P. aeruginosa*. The test extract of *L. sciuroides* showed only antimicrobial activity against the fungus *C. albicans* (MIC: 711 μ g/mL), and no antimicrobial activity was observed against bacteria *E. coli*, *Y. pseudotuberculosis*, *B. cereus*, and *M. smegmatis*.

Acknowledgments

This study was supported by grants from the Karadeniz Technical University Research Fund (KTÜ-BAP 2010.11.004.7) and the State Planning Agency (DPT) of Turkey.

References

- 1. Singh, G.; Kapoor, I. P. S.; Pandey, S. K.; Singh, U. K.; Singh, R. K. Phytother. Res. 2002, 16, 680-682.
- 2. Ando, H. China Proc. Bryol. Soc. Jpn. 1983, 3, 124-125.

- 3. Hart, J. A. J. Ethnophar. 1981, 4, 1–55.
- 4. Miller, N. G.; Miller H. Horticulture 1979, 57, 40-47.
- 5. Smith, A. J. E. The Moss Flora of Britain and Ireland, 2nd ed., Cambridge University Press, Cambridge, 2004.
- 6. Uyar, G.; Çetin, B. J. Bryol. 2004, 26, 203-220.
- Zoghbia, M. G. B.; Andrade, E. H. A.; Lobato, R. C. L.; Tavares, A. C. C.; Souza, A. P. S.; Conceiçao, C. C. C.; Guimaraesc, E. F. *Biochem. System. Ecol.* 2005, *33*, 269–274.
- 8. Kürschner, H.; Erdağ, A. Turk J. Bot. 2005, 29, 95–154.
- 9. Sarıtaş, Y.; Sonwa, M. M.; Iznaguen, H.; König, W. A.; Muhle, H.; Mues, R. Phytochemistry 2001, 57, 443-457.
- 10. Mues, R. In Bryophyte Biology; Shaw, A. J.; Goffinet, B., Eds.; Cambridge University Press, Cambridge, 2000.
- Asakawa, Y. In Progress in the Chemistry of Organic Natural Compounds, Vol. 65; Herz, W.; Kirby, G. W.; Moore, R. E.; Steglich, W.; Tamm, C., Eds.; Springer Verlag, Vienna, 1995.
- 12. Üçüncü, O.; Cansu, T. B.; Özdemir, T.; Karaoğlu, Ş. A.; Yaylı, N. Turk. J. Chem. 2010, 34, 825–834.
- 13. Özdemir, T.; Yaylı, N.; Cansu, T. B.; Volga, C.; Yaylı, N. Asian J. Chem. 2009, 21, 5505–5509.
- 14. Cansu, T. B.; Üçüncü, O.; Kariman, N.; Özdemir, T.; Yaylı, N. Asian J. Chem. 2010, 22, 7280–7284.
- 15. Özdemir, T.; Üçüncü, O.; Cansu, T. B.; Kahriman, N.; Yaylı, N. Asian J. Chem. 2010, 22, 7285–7290.
- 16. Kang, S. J.; Kim, S. H.; Liu, P.; Jovel, E.; Towers, G. H. N. Fitoterapia 2007, 78, 373–376.
- 17. Çolak, E.; Kara, R.; Ezer, T.; Çelik, G. Y.; Elibol, B. Afric. J. Biotech. 2011, 10, 12905–12908.
- Adams, R. P. Identification of Essential Oil Components by Gas Chromatography-Mass Spectroscopy, Allured, Carol Stream, IL, USA, 2004.
- 19. National Committee for Clinical Laboratory Standards, 19, 18-M26-A, NCCLS, Villanova, PA, USA, 1999.
- Woods, G. L.; Brown-Elliott, B. A.; Desmond, E. P.; Hall, G. S.; Heifets, L.; Pfyffer, G. E.; Ridderhof, J. C.; Wallace, R. J.; Warren, N. C.; Witebsky; F. G. Approved Standard. NCCLS 23, 18-M24-A, NCCLS, Villanova, PA, USA, 2003.