T.C. RİZE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ATOMLARIN FORM FAKTÖRLERİNİN HARTREE-FOCK-ROOTHAAN METODU İLE HESAPLANMASI

İlker ETLİK

Tez Danışmanı: Doç. Dr. Telhat ÖZDOĞAN

YÜKSEK LİSANS TEZİ

FİZİK ANABİLİMDALI

RİZE-2011

T.C. RİZE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİMDALI

ATOMLARIN FORM FAKTÖRLERİNİN HARTREE-FOCK-ROOTHAAN METODU İLE HESAPLANMASI

İlker ETLİK YÜKSEK LİSANS

Tezin Enstitüye Verildiği Tarih	: 10/06/2011
Tezin Sözlü Savunma Tarihi	: 04/07/2011

Tez Danışmanı	: Doç. Dr. Telhat ÖZDOĞAN
Jüri Üyesi	: Doç. Dr. Hasan BALTAŞ
Jüri Üyesi	: Yrd. Doç. Dr. Mehmet KARA
	S.

Enstitü Müdürü

: Doç. Dr. Fatih YILMAZ

RİZE-2011

ÖNSÖZ

Yüksek Lisans çalışmam boyunca, önerileri ve eleştirileri ile beni yönlendiren, zamanını ve hoşgörüsünü hiçbir zaman esirgemeyen, bilgi ve tecrübelerini benimle paylaşan danışman hocam sayın Doç. Dr. Telhat ÖZDOĞAN'a teşekkürlerimi sunarım. Çalışmam boyunca, özellikle saçılma konusunda sağladığı değerli katkılardan dolayı sayın Doç. Dr. Mehmet ŞAHİN'e teşekkür ederim.

Beni yetiştiren anneme, babama ve her konuda elinden geldiğince bana yardımcı olan, çalışmam boyunca gösterdiği sabır ve anlayıştan dolayı sevgili eşim Semiha YILMAZ ETLİK'e sonsuz teşekkür ederim.

İÇİNDEKİLER

Sayfa	No

ÖNSÖZ	
İÇİNDE	KİLER II
ÖZET	IV
ABSTR	ACT V
SEMBC	DLLER ve KISALTMALAR DİZİNİVI
ŞEKİLI	ER DİZİNİ VIII
1.	GENEL BİLGİLER1
1.1.	Giriş1
1.2.	Madde-Foton Etkileşimi
1.2.1.	Fotoelektrik Olay
1.2.2.	Çift Oluşum
1.2.2.	Koherent Saçılma
1.2.3.1.	Thomson Saçılması
1.2.3.2.	Rayleigh Saçılması
1.2.3.3.	Delbruck Saçılması7
1.2.3.4.	Nükleer Rezonans Saçılma7
1.2.4.	İnkoherent Saçılma7
1.2.4.1.	Compton Saçılması7
1.2.4.2.	Nükleer Saçılma
1.2.4.3.	Raman Saçılması
1.3.	Çok Elektronlu Atomlar
1.3.1.	Hartree - Fock Yaklaşımı 10
1.3.2.	Hartree-Fock-Roothaan Yaklaşımı
1.3.2.1.	Adiyabatik Yaklaşım (Born-Oppenheimer Yaklaşımı) 14

1.3.2.2.	Varyasyon Metodu
1.3.2.3.	LCAO (Linear Combination of Atomic Orbitals) Yaklaşımı16
1.4.2.4.	Merkezi Alan Yaklaşımı 17
1.4.2.5.	Slater Determinantı
1.5.	Tezin Amacı
2.	YAPILAN ÇALIŞMALAR
2.1.	Giriş
2.2.	MBS Kullanılarak Atomik Form Faktörlerinin HFR Metodu ile Hesaplanması21
2.3.	GBS Kullanılarak Atomik Form Faktörlerinin HFR Metodu ile Hesaplanması23
3.	BULGULAR
4.	TARTIŞMA
5.	SONUÇ VE ÖNERİLER
	KAYNAKLAR
	EKLER
	ÖZGEÇMİŞ

ÖZET

Bu çalışmada; Hartree-Fock- Roothaan metodu ile saçılma deneylerinde ortaya çıkan atomik form faktörleri incelenmiştir. Minimal ve genişletilmiş baz seti için Slater tipli orbitaller kullanılarak atomik form faktörler incelenmiş ve genel analitik ifadeler bulunmuştur. Atomik form faktörleri için elde edilen ifadeler; Gaunt katsayıları ve bazı yardımcı moleküler integraller içermektedir.

Atomik form faktörleri için elde edilen ifadeler ve içerdiği fonksiyonların Maple 13 sembolik programlama dilinde programları yapılmıştır. Bu program kullanılarak Z=2-54 aralığındaki atomların taban durumları için form faktör değerleri hesaplanmış ve literatürde varolan değerlerle karşılaştırılmıştır. Sonuç olarak, hesaplanan atomik form faktör değerlerinin literatürdeki değerlerle uyumlu olduğu gözlenmiştir.

Anahtar Kelimeler: Slater tipli orbital, Hartree-Fock-Roothaan Medotu, küresel Bessel fonksiyonu, Gaunt katsayısı.

ABSTRACT

In this study; atomic form factors, appearing in scattering experiments, have been investigated by Hartree-Fock- Roothaan method. Using Slater type orbitals for minimal and extended basis sets, atomic form factors have been studied and general analytical expressions have been found. The obtained expressions for atomic form factors include Gaunt coefficients and some auxiliary molecular integrals.

Programs of the obtained expressions for atomic form factors and included functions have been constructed in Maple 13 symbolic programming language. Using this program, atomic form factor values for the ground state of atoms in range Z=2-54 have been calculated and compared with the available literature values. As a result, it is seen that the calculated form factors for the ground states of atoms in range Z=2-54 are in agreement with the available literature values.

Key Words: Slater type orbital, Hartree-Fock-Roothaan method, spherical Bessel function, Gaunt coefficient.

SEMBOLLER ve KISALTMALAR DİZİNİ

λ	: Dalgaboyu
h	: Planck sabiti
E_K	: Kinetik enerji
С	: Işık hızı
V	: Frekans
т	: Kütle
m_0	: Elektronun durgun kütlesi
$F(\vec{k})$: Atomik form faktörü
σ_T	: Thomson saçılma tesir kesiti
σ_{coh}	: Koherent saçılma diferansiyel tesir kesiti
Ω	: Katı açı
r _e	: Klasik elektron yarıçapı
Ψ	: Sistemin dalga fonksiyonu
HF	: Hartree - Fock Metodu
BTO	: Bessel Tipli Orbital
GTO	: Gaussian Tipli Orbital
PTO	: Polinom Tipli Orbital
STO	: Slater Tipli Orbital
σ(s)	: Spin fonksiyonu
f	: Fock operatörü
ε _i	: Orbital enerjisi
$\hat{J}_J(\vec{r}_1)$: Coulomb operatörü
$\widehat{K}_J(r_1)$: Exchange operatörü
S	: Overlap matrisi
LCAO	: Atomik Orbitallerin Lineer Kombinasyonu
HFR	: Hartree-Fock-Roothaan Metodu
Ζ	: Çekirdek yükü
Z^{*}	: Etkin çekirdek yükü
σ_{nlm}	: Perdeleme sabiti

- n^* : Etkin baş kuantum sayısı
- $\rho(\vec{r})$: Elektron yoğunluğu
- \vec{k} : Foton momentum transfer vektörü
- η_j : Doluluk oranı
- $j_l(x)$: *l*. nci mertebeden Küresel Bessel fonksiyonu

ŞEKİLLER DİZİNİ

-	<u>S</u>	Sayfa No
Şekil 1.	Fotoelektrik Olay	3
Şekil 2.	Çift Oluşum Olayı	4
Şekil 3.	Rayleigh saçılması	6
Şekil 4.	Compton saçılmasının temsili gösterimi	8
Şekil 5.	42Mo atomunun form faktör değişimi.	52
Şekil 6.	43Tc atomunun form faktör değişimi	
Şekil 7.	44Ru atomunun form faktör değişimi.	53
Şekil 8.	45Rh atomunun form faktör değişimi	
Şekil 9.	46Pd atomunun form faktör değişimi	
Şekil 10.	47Ag atomunun form faktör değişimi	
Şekil 11.	48Cd atomunun form faktör değişimi.	
Şekil 12.	49Kr atomunun form faktör değişimi	55
Şekil 13.	Küresel Kordinat Sistemi	60
Şekil 14.	Bazı Legendre Polinomları	63

TABLOLAR DİZİNİ

Sayfa No

Tablo 1. $_2He$ (1 s^2) atomunun taban durumları için hesaplanan form faktör değerleri ve
literatür ile karşılaştırılması25
Tablo 2. $_{3}Li (1s^{2} 2s^{1})$ atomunun taban durumları için hesaplanan form faktör değerleri ve
literatür ile karşılaştırılması25
Tablo 3. $_{4}Be (1s^{2} 2s^{2})$ atomunun taban durumları için hesaplanan form faktör değerleri
ve literatür ile karşılaştırılması
Tablo 4. ${}_{5}B$ (1s ² 2s ² 2p ¹) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 5. ${}_{6}C$ (1s ² 2s ² 2p ²) atomunun taban durumları için hesaplanan form faktör ve
literatür ile karşılaştırılması
Tablo 6. $_7N$ (1s ² 2s ² 2p ³) atomunun taban durumları için hesaplanan form faktör ve
literatür ile karşılaştırılması27
Tablo 7. $_{8}O$ (1s ² 2s ² 2p ⁴) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 8. $_{9}F$ (1s ² 2s ² 2p ⁵) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 9. $_{10}$ Ne (1s ² 2s ² 2p ⁶) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 10. 11Na ([Ne] 3s ¹) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 11. ₁₂ Mg ([Ne] 3s ²) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 12. 13Al ([Ne] 3s ² 3p1) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 13. 14Si ([Ne] 3s ² 3p ²) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması
Tablo 14. $_{15}P$ ([Ne] $3s^2$ $3p^3$) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması

Tablo 15.	$_{16}S$ ([Ne] $3s^2 3p^4$) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 16.	17Cl ([Ne] 3s ² 3p ⁵) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 17.	$_{18}$ Ar ([Ne] $3s^2 3p^6$) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 18.	19K ([Ar] 4s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 19. 2	₀ Ca ([Ar] 4s ²) atomunun taban durumları için hesaplanan form faktör değerleri
	ve literatür ile karşılaştırılması
Tablo 20.	$_{21}$ Sc ([Ar] 3d ¹ 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 21.	₂₂ Ti ([Ar] 3d ² 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 22.	₂₃ V ([Ar] 3d ³ 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 23.	$_{24}$ Cr ([Ar] 3d ⁵ 4s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 24.	$_{25}$ Mn ([Ar] 3d ⁵ 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 25.	₂₆ Fe ([Ar] 3d ⁶ 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 26.	$_{27}$ Co ([Ar] 3d ⁷ 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 27.	$_{28}\mathrm{Ni}$ ([Ar] 3d 8 4s $^2)$ atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 28.	29Cu ([Ar] 3d ¹⁰ 4s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 29.	$_{30}$ Zn ([Ar] 3d ¹⁰ 4s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 30. 3	$_{1}$ Ga ([Ar] 3d ¹⁰ 4s ² 4p ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması

Tablo 31.	$_{32}$ Ge ([Ar] $3d^{10}$ $4s^2$ $4p^2$) atomunun taban durumları için hesaplanan form
	faktör değerleri ve literatür ile karşılaştırılması
Tablo 32.	$_{33}$ As ([Ar] 3d ¹⁰ 4s ² 4p ³) atomunun taban durumları için hesaplanan form
	faktör değerleri ve literatür ile karşılaştırılması
Tablo 33.	$_{34}$ Se ([Ar] $3d^{10}$ $4s^2$ $4p^4$) atomunun taban durumları için hesaplanan form
	faktör değerleri ve literatür ile karşılaştırılması41
Tablo 34.	$_{35}\mathrm{Br}$ ([Ar] $3d^{10}$ $4s^2$ $4p^5$) atomunun taban durumları için hesaplanan form
	faktör değerleri ve literatür ile karşılaştırılması41
Tablo 35.	$_{36}$ Kr ([Ar] $3d^{10}$ $4s^2$ $4p^6$) atomunun taban durumları için hesaplanan form
	faktör değerleri ve literatür ile karşılaştırılması42
Tablo 36.	37Rb ([Kr] 5s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması42
Tablo 37.	$_{38}$ Sr ([Kr] 5s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması43
Tablo 38.	39Y ([Kr] 4d ¹ 5s) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 39.	$_{40}$ Zr ([Kr] 4d ² 5s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 40.	$_{41}$ Nb ([Kr] 4d ⁴ 5s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 41.	$_{42}$ Mo ([Kr] 4d ⁵ 5s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 42.	$_{43}$ Tc ([Kr] 4d ⁵ 5s ²) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 43.	$_{44}$ Ru ([Kr] 4d ⁷ 5s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 44.	$_{45}$ Rh ([Kr] 4d ⁸ 5s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması
Tablo 45.	46Pd ([Kr] 4d ¹⁰) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması47
Tablo 46.	47Ag ([Kr] 4d ¹⁰ 5s ¹) atomunun taban durumları için hesaplanan form faktör
	değerleri ve literatür ile karşılaştırılması47

$_{48}$ Cd ([Kr] 4d ¹⁰ 5s ²) atomunun taban durumları için hesaplanan form fakt	ör
değerleri ve literatür ile karşılaştırılması	18
$_{49}$ In ([Kr] $4d^{10}$ $5s^2$ $5p^1$) atomunun taban durumları için hesaplanan for	m
faktör değerleri ve literatür ile karşılaştırılması	18
$_{50}$ Sn ([Kr] 4d ¹⁰ 5s ² 5p ²) atomunun taban durumları için hesaplanan for	m
faktör değerleri ve literatür ile karşılaştırılması	19
$_{51}$ Sb ([Kr] 4d ¹⁰ 5s ² 5p ³) atomunun taban durumları için hesaplanan for	m
faktör değerleri ve literatür ile karşılaştırılması	19
$_{52}$ Te ([Kr] $5s^2 4d^{10}5p^4$) atomunun taban durumları için hesaplanan for	m
faktör değerleri ve literatür ile karşılaştırılması	50
$_{53}$ I ([Kr] $5s^2 4d^{10}5p^5$) atomunun taban durumları için hesaplanan form fakt	ör
değerleri ve literatür ile karşılaştırılması	50
$_{54}$ Xe ([Kr] $5s^2 4d^{10}5p^6$) atomunun taban durumları için hesaplanan for	m
faktör değerleri ve literatür ile karşılaştırılması	50
Legendre polinomlarının ilk altı değeri	52
$P_l^m(\cos\theta)$ Legendre fonksiyonunun ilk altı değeri	53
Küresel harmoniklerin <i>l</i> ve <i>m</i> değerlerine göre incelenmesi	55
	48Cd ([Kr] 4d ¹⁰ 5s ²) atomunun taban durumları için hesaplanan form fakt değerleri ve literatür ile karşılaştırılması

1. GENEL BİLGİLER

1.1. Giriş

Maddenin sürekli veya birbirinden ayrı parçacıkların karışımı olduğu hakkındaki ilk düşüncelerle ilgili kayıt Yunan Filozofları tarafından yapıldı. Yunanlı filozoflara göre evrenin şekil, konum ve diziliş olarak birbirinden farklı atom denilen bölünmez parçacıklar ve boş uzaydan ibaret olduğu ileri sürüldü [1].

1920 ve 1930'lara gelindiğinde atomların içyapısına girilmiş ve atomdaki elektron, proton ve nötron gibi mikroskobik boyutlardaki parçacıkların davranışlarının belirlenmesine açıklık getirilmesi ihtiyacı doğmuştur. Klasik teori; atom, molekül, çekirdek ve temel parçacıkların davranışını açıklamada başarısız olmuştur. 1930'lu yıllarda yeni bir teori olan kuantum fiziği ortaya çıkmıştır. Bu teori, parçacıktan çok ona eşlik eden dalga fonksiyonu ile ilgilenir. 1900-1926 yılları boyunca geliştirilen kuantum düşüncesine uygun olarak, 1926- 1933 yılları arsında kuantum sistemlerinin uyacakları mekanik kurulmuştur. de Broglie'nin kuramından hareketle Schrödinger, modern kuantum kuramının temellerini oluşturan bir diferansiyel denklem ortaya koyar. Schrödinger'in dalga mekaniği, ilk bakışta çok farklı görünen başka bir kuramın oluşumuyla aynı zamana rastlar. Aynı tarihlerde W. Heisenberg, M. Born ve P. Jordan kuantum matris mekaniği denen ikinci kuramın gerçekleşmesini sağlamışlardır. Böylece çok kısa bir sürede fizikçilerin önüne, başarıyla uygulamaları için matematiksel bir teori konmuş oldu. Dirac, 1930'da kuantum mekaniğinin "soyut vektör uzayı formalizmini" kurdu. Böylece kuantum kuramının temelleri atıldıktan sonra maddenin daha iyi anlaşılması sağlandı. Bu konuda yapılmış olan çalışmaların iki ayrı alanda yürütüldüğünü görüyoruz. Bunlardan birincisi, çekirdeği ve onun parçalarını araştırarak maddenin birliğini kavramaya yönelikti. Bu konu, çekirdek ve yüksek enerji fiziği alanına girmektedir. İkincisi, atomların karşılıklı etkileşmelerini veya atomlarla daha büyük madde biçimleri, yani moleküller, kristaller veya biyolojik moleküller arasındaki bağlantıları incelemeye dönük çalışmalardı. Bu konu, atom ve molekül fiziğinin daha sonra da özel olarak yoğun madde fiziğinin konusuna girmektedir. Kuantum mekaniği her iki yönde sürdürülen araştırmalarda büyük rol oynamıştır [2].

Atomlar, boyutları itibari ile çok küçük olduklarından yapıları doğrudan gözlenemez. Dolayısıyla, atomları bir şeyler ile etkileşmeye zorlayarak zorlayıcı numunedeki

1

değişmeler gözlenebilir ve bu gözlemlerden atomun yapısı hakkında bazı önemli bilgiler elde edilebilir. Bu amaçla saçılma deneyleri yapılmaktadır.

Saçılma ile maddenin yapısı, fiziksel ve kimyasal özelliklerini incelemek mümkündür. Farklı parçacıkların çarpışmasıyla ilgili deneyler ve hesaplamalar günümüzde de devam etmektedir. Bu deneylerde kullanılan parametrelerden birisi de saçılma faktörü (atomik form faktörü) dür.

Atomik form faktörü; katıhal fiziği, atom molekül fiziği, nükleer fizik, kristal ve katıların yapı analizinde ortaya çıkan önemli bir parametredir. Form faktörü, çekirdek etrafındaki elektron yoğunluluğunun ters Fourier dönüşümüdür ya da momentum uzayındaki elektron yoğunluğu olarak tanımlanır Atomik form faktörü; X-ışını saçılma deneyleri ve X-ışını floresans analizinden elde edilen verilerin analizi için geniş bir şekilde kullanılır. Ayrıca atomik form faktörü atomların ve moleküllerin içyapısı hakkında bilgi verir.

1.2. Madde-Foton Etkileşimi

Madde üzerine gönderilen foton; maddeye bağlı elektronlar, serbest elektronlar ve çekirdekle etkileşirler. Bu etkileşme sonucunda bazı önemli olaylar meydana gelir. Bunlardan en önemlileri;

- ✓ Fotoelektrik olay
- ✓ Çift oluşum
- ✓ Koherent (elastik) saçılma
- ✓ İnkoherent (Compton, inelastik) saçılma

1.2.1. Fotoelektrik Olay

Bir kaynaktan gelen fotonun tüm enerjisini atoma bağlı elektrona vererek atomdan elektron sökmesi olayına fotoelektrik olay denir. Sökülen elektrona fotoelektron denir.

Foton madde yüzeyindeki bir elektrona çarptığında *hv* enerjisinin bir kısmı elektronu madde yüzeyinden sökmek için harcanmakta, geri kalanı ise elektronun kinetik enerjisi olarak aktarılmaktadır.

Şekil 1. Fotoelektrik Olay

Enerji korunumundan faydalanılarak fotonun enerjisi, bağlanma enerjisi ve fotoelektronun kinetik enerji arasındaki bağıntı

$$E_{Foton} = E_{Bağlanma} + E_{Kinetik} \tag{1}$$

$$\frac{hc}{\lambda} = W + \frac{1}{2}mv^2 \tag{2}$$

ile verilir. Burada W bağlanma enerjisidir.

1.2.2.Çift Oluşum

1.02 MeV'den daha büyük enerjili bir foton, yüksek numaralı bir elementin çekirdeğinin yanından geçerken yok olur ve bir pozitron elektron çifti meydana gelir. Bu olayda soğurulan enerji, oluşan çiftin toplam enerjisine eşittir.

$$hv = (T_{-} + m_0 c^2) + (T_{+} + m_0 c^2)$$
(3)

Burada hv gelen fotonun enerjisi, T_- ve T_+ elektron ve pozitronun kinetik enerjileri, m_0c^2 ise elektronun durgun kütle enerjisidir.

Elektron ve pozitronun kütleleri birbirine eşit fakat zıt işaretlidir. Aynı zamanda bu olay çekirdek etrafında oluştuğundan hiçbir korunum ilkesi bozulmuş olmaz. Yani, hem yük hem çizgisel momentum ve hem de toplam enerji korunmuş olur. Bu olay Şekil 2.'de gösterilmiştir. Bu olay için eşik enerjisi $m_0c^2 = 0,511 MeV$ 'dir. Bu nedenle çift oluşum olabilmesi için foton enerjisinin en az 1,02 MeV olması gerekir [3].

Şekil 2. Çift Oluşum Olayı [4].

1.2.2. Koherent Saçılma

Düşük enerjili fotonların atomla etkileşmesi sonucu meydana gelen saçılmaya koherent saçılma denir. Bu saçılmada gelen foton ile saçılan foton arasında enerji farkı çok azdır. Bu saçılmada gelen fotonla saçılan fotonun dalga boyları aynıdır. Bu saçılma olayında gelen ve saçılan radyasyonun toplam şiddeti, her bir elektron tarafından saçılan radyasyonun genliklerinin toplamı ile bulunur ve toplamı kareseldir. Koherent saçılma tesir kesiti; F(x, Z) atomik form faktörü, σ_T Thomson saçılma tesir kesiti olmak üzere aşağıdaki gibi ifade edilir:

$$\sigma_{coh} = \int_{\theta=0}^{\theta=\pi} d\sigma_T [F(x,Z)]^2$$

$$= \frac{3}{8} \sigma_T \int_{-1}^{+1} (1 + \cos\theta) [F(x,Z)]^2 d(\cos\theta)$$
(4)

ifadesi ile verilir.

Koherent saçılma diferansiyel tesir kesiti [5]

$$\frac{d\sigma_{coh}}{d\Omega} = \frac{d\sigma_T(\theta)}{d\Omega} \left[F(x, Z) \right]^2,$$
(5)

$$=\frac{1}{2}r_{e^{2}}(1+Cos^{2}\theta)[F(x,Z)]^{2}$$
(6)

olarak yazılır. Koherent saçılma diferansiyel tesir kesiti iki kısımdan oluşur. Birinci kısım Thomson diferansiyel tesir kesitidir ve

$$\frac{1}{2}r_{e^2}(1+\cos^2\theta)\tag{7}$$

ifadesiyle verilir. İkinci terim ise atomik form faktörünün karesi olan $F(x.Z)^2$ terimidir. Koherent saçılma; Thomson saçılması, Rayleigh saçılması, Delbruck saçılması, nükleer rezonans saçılma ve nükleer Thomson saçılması olmak üzere dört çeşittir [6].

1.2.3.1.Thomson Saçılması

Saçılma olayını klasik elektromanyetik teoriye göre açıklayan Thomson'a göre; bir foton serbest bir elektron üzerine geldiğinde elektron ile etkileşir bu etkileşme sonucunda elektrik alan meydana gelir. Elektron bu elektrik alandan dolayı ortalama bir konum etrafında titreşim hareketi yapar. Bu titreşim hareketi sonucu ivmeden kaynaklanan bir kuvvet meydana gelir. İvmeli harekette bulunan yüklü parçacıklar elektromanyetik dalga yayınlarlar. Bu elektromanyetik dalganın frekansı gelen dalga ile aynıdır. Thomson saçılma diferansiyel tesir kesiti

$$\frac{d\sigma_T(\theta)}{d\Omega} = \frac{1}{2}r_{e^2}(1 + \cos^2\theta) \tag{8}$$

ifadesiyle verilir. Toplam saçılma tesir kesiti,

$$\sigma_T(\theta) = 2\pi \int_0^{\pi} \frac{d\sigma_T(\theta)}{d\Omega} \sin \theta d\theta = 2\pi \int_0^{\pi} \frac{1}{2} r_e^2 (1 + \cos^2 \theta) \sin \theta d\theta$$
(9)

Burada r_e klasik elektron yarıçapıdır ve

$$r_e = \frac{e^2}{m_0 c^2} = 2,818.\,10^{-13}\,\mathrm{cm}$$
 (10)

ve θ ise saçılma açısı yani saçılan fotonun doğrultusu ile gelen fotonun doğrultusu arasındaki açıdır.

1.2.3.2.Rayleigh Saçılması

0,1 MeV ve daha düşük enerjilerdeki fotonların atoma bağlı elektronlar tarafından saçılmasıdır. Rayleigh saçılmasından sonra hedef atom değişmeden kalır. Bu olay, gelen fotonun enerjisi, atoma bağlı elektronu atomdan sökecek kadar enerjisi yok ise meydana gelir. Şekil 3'deki gibi gelen foton, bağlı bir elektron üzerine düştüğünde elektronun atomdan sökülecek kadar enerji almadığı hallerde meydana geldiği için düşük foton enerjilerinde ve büyük Z' li ağır elementlerde meydana gelme ihtimaliyeti daha fazladır. Rayleigh saçılma tesir kesiti Z^2 ile orantılı olup koherent saçılmanın en çok görülen çeşidi olduğu için genellikle koherent saçılma tesir kesitiyle eşdeğer anlamda kullanılır [4].

Rayleigh saçılmada hv enerjili bir foton atom tarafından soğurulur. a seviyesindeki bir elektron n seviyesine uyarılır. İkinci adımda atom hv enerjili bir foton yayınlar ve elektron *b* seviyesine döner. Eğer *b* seviyesi *a* seviyesi ile aynı ise yayınlan ışının frekansı, gelen fotonun frekansı ile aynıdır.

Şekil 3. Rayleigh saçılması

1.2.3.3.Delbruck Saçılması

Delbrück saçılması, çekirdeğin oluşturduğu Coulomb alanından fotonların saçılmasıdır. Bu saçılmaya nükleer potansiyel saçılma da denilmektedir. Bu olay sonunda çekirdek çevresinde bir elektron çifti oluşur. Bu çiftin yok olması enerji ve faz bakımından gelen fotonun aynısı olan yeni bir foton meydana gelir. Bu olayın etkisi çok küçük olduğu için deney sonuçlarında gözlenememektedir.

1.2.3.4.Nükleer Rezonans Saçılma

Nükleer rezonans saçılması, fotonla atom çekirdeğinin etkileşmesi sonucu oluşur. Bu işlemde çekirdek, iki nükleer enerji seviyesi arasındaki farka eşit enerjiye sahip olan bir fotonun soğurulması ile uyarılır. Bu olayı çekirdeğin uyarılmış durumdan kurtulması takip eder. Nükleer rezonans saçılma tesir kesiti *Z* ile orantılıdır [7].

Nükleer rezonans saçılması, organik kimyada, moleküllerin yapısının tayininde oldukça sık kullanılan spektroskopik bir yöntemdir. Atom çekirdeği ve elektronlar, atomu oluşturan yüklü taneciklerdir. Elektronlar kendi eksenleri etrafında dönerler. Atom çekirdekleri de spin hareketi yapar. Kendi ekseni etrafında dönen yüklü bir parçacık dairesel bir elektrik alanı oluşturacağından, bu akım bir manyetik alan yaratır. Bu ise, spin hareketi yapan yüklü bir taneciğin küçük bir mıknatıs gibi davranacağı ve dolayısı ile dıştan uygulanan bir manyetik alandan etkileneceği anlamına gelir.

1.2.4. İnkoherent Saçılma

Bu saçılmada gelen ve saçılan fotonlar arasında enerji farkı vardır. Yani, gelen ve saçılan fotonların dalga boyları ve fazları birbirinden farklıdır. İnkoherent saçılma;

- 1. Compton saçılması,
- 2. Nükleer saçılma,
- 3. Raman saçılması

olmak üzere üç çeşittir.

1.2.4.1.Compton Saçılması

Atoma zayıf bağlı olan elektrona yüksek enerjili bir fotonun çarpışarak saçılmasına Compton olayı denir. Compton olayı ışığın tanecikli yapısını ortaya koyan bir olaydır ve bu olayda enerji ve momentum korunur.

Şekil 4. Compton saçılmasının temsili gösterimi

Şekil 4'de gösterilen olayda x- yönünde gelen foton E = hv enerjisini ve p = hv / cmomentumu taşımaktadır. Elektron başlangıçta durgundur ve durgun kütle enerjisi $E = mc^2$ ve p = 0'dır. Saçılan fotonun enerjisi E' = hv ve momentumu p' = hv' / c'dır ve saçılma doğrultusu x ile θ açısı yapmaktadır. Başlangıçta durgun olan elektron ise ϕ açısına tepmektedir. Enerjinin ve momentumun korunumundan [8]

$$h\nu + mc^2 = h'\nu + E \tag{11}$$

$$\frac{h\nu}{c} = \frac{h\nu'}{c}\cos\theta + p\cos\varphi \tag{12}$$

$$0 = \frac{hv'}{c}\sin\theta - p\sin\phi \tag{13}$$

yazılabilir. Denklem (11) ve (12)' den

$$h^2 v^2 + h^2 v'^2 - 2h^2 v v' \cos\theta = c^2 p^2 \tag{14}$$

denklem (13)' den

$$h^{2}v^{2} + h^{2}v'^{2} - 2h^{2}vv'\cos\theta = E^{2} + m^{2}c^{4} - 2Emc^{2}$$
(15)

yazılır. Denklem (14)' den denklem (15) çıkartılırsa, enerji ve momentum arasındaki bağıntı

$$E^2 = P^2 c^2 + m^2 c^4 \tag{16}$$

bağıntısı kullanılırsa

$$-2h^{2}\nu\nu'(1-\cos\theta) = -2mc^{2}(E-mc^{2})$$
(17)

bulunur. Denklem (11)' de $E - mc^2 = h(v - v')$ olduğundan;

$$\frac{h}{mc}(1 - \cos\theta) = c\left(\frac{\nu - \nu'}{\nu\nu'}\right) = \frac{c}{\nu'} - \frac{c}{\nu} = \lambda'$$
(18)

olur. Buna göre dalga boyundaki uzama

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{mc} (1 - \cos\theta) = \lambda_c (1 - \cos\theta)$$
(19)

elde edilir.

1.2.4.2.Nükleer Saçılma

Bu saçılma, foton ve atom çekirdeğinin etkileşmesi sonucu meydana gelir. Bu saçılmanın toplam inkoherent saçılmaya katkısı çok azdır [9].

1.2.4.3. Raman Saçılması

Raman saçılması ikinci mertebeden bir olay olarak da düşünülmektedir. Birinci adımda hv enerjili bir foton soğurulur ve atom bir *a* durumundan *n* durumuna uyarılır. İkinci adımda, atom hv' enerjili bir foton yayımlar ve uyarılmış *n* durumundan son *b* durumuna döner. Atomun son durumu başlangıçtaki durumundan farklı ise saçılma koherent değildir ve bu olay Raman saçılması olarak bilinir [4]. İlk defa Hintli fizikçi C. V. Raman tarafından gözlemlenen bu olay ona atfen Raman saçılması olarak adlandırılır. Bir inkoherent saçılma olayı olan Raman saçılmasında saçılan fotonun enerjisi:

$$hv' = hv + (E_a + E_b) \tag{20}$$

şeklinde verilir.

1.3. Çok Elektronlu Atomlar

Atomlar, moleküller ve katılar gibi çok parçacıklı sitemlerin tam tanımlanabilmesi, geçen yüzyılda fiziğin ve kimyanın en önemli ve en zor problemi olmuştur. Bu sistemlerin özelliklerinin tam olarak tanımlamak için elektronik yapılarının belirlenmesi gerekir. Kuantum mekaniği denklemlerin sayısal birçok zorluklarla karşılaşılmıştır. Kuantum mekaniksel dalga fonksiyonu, sistem hakkındaki tüm bilgiyi içerir. Örnek olarak hidrojen atomu için Schrödinger denklemi yardımı ile dalga fonksiyonun çözümü bulunur ve tüm enerji durumları belirlenir. Kuantum mekaniğinde tam olarak çözülebilen tek atom Hidrojen atomudur. Birden fazla elektrona sahip atomlar için Schrödinger denkleminin çözümü mümkün olmadığı için yaklaşık yöntemler geliştirilmiştir.

Fenciler, geliştirilen kuramların deneysel gözlemlerle uyum halinde olmasını isterler. Bu nedenle hesaplamalar da deneyler kadar sağlıklı olmalıdır. Fakat tam çözüm mümkün değilse yaklaşık hesaplamalardan başka yol yoktur. Buna göre yaklaşık hesaplama, uygulanan deneysel yöntemden kötü değilse, tam çözüme gerek yoktur [8].

Karmaşık atomlar için Hartree-Fock veya öz uyumlu alan yöntemi olarak bilinen bir yaklaşım ele alınmıştır. Bu yaklaşıma göre parçacık zamandan bağımsızdır. Zamandan bağımsız parçacık modeline göre; her elektron, çekirdeğin çekici alanı ve diğer elektronlardan ötürü itme etkileşmelerinin ortalama etkisini hesaba katan bir etkin potansiyelde hareket etmektedir. Yani çok elektronlu sistemdeki her elektron kendi dalga fonksiyonu ile tanımlanır. Hartree toplam dalga fonksiyonu iyon için antisimetrik değildir. Antisimetriklik özelliğini de dikkate alarak, Hartree yönteminin genelleştirilmesi ile 1930 yılında Fock ve Slater tarafından bir yaklaşım elde edilmiştir. Hartree-Fock yöntemi atomların dalga fonksiyonları ve enerjilerinin bulunmasında ilk adımdır.

1.3.1. Hartree - Fock Yaklaşımı

Zamandan bağımsız relativistik olmayan Schrödinger denkleminin çözümü kuantum kimyasında önemli problemlerden biridir. Tam çözüm sadece bir elektronlu sistemler için yapılabilir. Çok elektronlu sistemlerin Schrödinger denkleminin çözümü için ilk olarak 1927 yılında Hartree tarafından en basit yaklaşım öne sürüldü.

Hartree yaklaşımı çok elektronlu sistemin dalga fonksiyonunu ψ , tek elektron dalga fonksiyonlarının (ϕ)'lerin çarpımı ile bulunur [10]. Yani

$$\psi(\vec{x}_1, \vec{x}_2 \dots \vec{x}_N) = \phi(\vec{x}_1) \phi(x_2) \dots \phi(\vec{x}_N) = \prod_{i=1}^N \phi_i(\vec{x}_i)$$
(21)

Bu denklemde \vec{x}_i ; *i*. elektronun spin ve konum koordinatlarıdır. Konum koordinatları kürsel koordinatlarda ifade edilir. Yani $\vec{x} = (r, \theta, \varphi; m_s)$ 'dır. Burada m_s iki değer alabilir. Bu değerler spin yukarı (+1/2, α yada \uparrow) ve spin aşağı (-1/2, β yada \downarrow)'dır. Atomdaki veya moleküldeki her bir elektron denklem 21' deki, $\phi(\vec{x}_i)$ fonksiyonları ile ifade edilir. Bu fonksiyona spin orbitalleri olarak da adlandırılır. Bu yaklaşım elektronların bağımsız hareket ettiğini kabul ediyor. Fakat her bir elektron diğer elektronların oluşturduğu ortalama bir alanda hareket eder. Elektronlar birer fermiyon oldukları ve spinleri 1/2 olduğu için dalga fonksiyonları antisimetrik olmalıdır.

Hartree-Fock yaklaşımında da tek elektron dalga fonksiyonu kullanılır ancak sistemin dalga fonksiyonu, antisimetri özelliğini de sağlayacak şekilde seçilir. Sistemin toplam dalga fonksiyonu için 1930 yılında tek elektron dalga fonksiyonlarının basit çarpımı yerine Slater determinantını kullanan varyasyonel bir metot geliştirdiler.

N-elektronlu bir kuantum mekaniksel sistem için Slater determinantı denklem 44' de gösterilmiştir. Burada Slater determinant dalga fonksiyonu, Pauli dışarlama ilkesini sağlar. Çünkü Slater determinantında iki satır aynı olduğunda (iki elektron dört kuantum sayısı aynı olduğunda), determinantın değeri sıfır olur. Bu durum Pauili dışarlama ilksine karşılık gelir. Slater determinantında iki satırın yer değiştirmesi (iki elektronun yer değiştirmesi) determinantın işaretini değiştirir. Bu durumda Pauli antisimetriklik ilkesine karşılık gelir [11].

Bir elektronlu dalga fonksiyonu $\phi_i(x_i)$ (spin orbital); bir uzay orbitali $\phi(\vec{r})$ ve spin fonksiyonu $\sigma(s)$ 'den (α veya β) oluşur:

$$\phi_i(x_i) = \phi_i(r_i)\sigma(s) \tag{22}$$

Çok elektronlu bir sistem için elektronik Hamiltonyen bir ve iki elektronlu parçalardan oluşur.

$$\hat{h}_{i} = -\frac{1}{2}\nabla_{i}^{2} - \sum_{A}^{M} \frac{Z_{A}}{r_{1A}}$$
(23)

$$\hat{g}_{ij} = \frac{1}{r_{12}}.$$
(24)

Hamiltonyen'nin beklenen değeri;

$$E = \langle \psi_{SD} | \hat{H} | \psi_{SD} \rangle = \sum_{i}^{N} (i | \hat{h} | i) + \frac{1}{2} \sum_{i}^{N} \sum_{j}^{N} (i i | j j) - (i j | j i)$$
(25)

Burada (ii|jj) ve (ij|ji) sırasıyla Coulomb ve exchange (Değiş-tokuş integrali) integralleridir.

$$(ii|jj) = \int \int |\psi_i(r_1)|^2 \frac{1}{r_{12}} |\psi_i(r_1)|^2 dr_1 dr_2$$
(26)

$$(ij|ji) = \int \int \psi_i(r_1) \psi_j^*(r_1) \frac{1}{r_{12}} \psi_j(r_2) \psi_i^*(r_2) dr_1 dr_2$$
(27)

ifadeleri ile tanımlanırlar. Fock operatörünün bir elektronlu bir elektronlu kısmı;

$$\hat{f} = -\frac{1}{2} \nabla_{i}^{2} - \sum_{A}^{M} \frac{Z_{A}}{r_{1A}} + V_{HF}(r_{i})$$
(28)

olmak üzere Hartree-Fock denklemleri;

$$\hat{f}\psi_i = \varepsilon_i\psi_i \tag{29}$$

şeklinde verilir. Denklem (29)'da Lagrangian çarpanı ε_i , orbital enerjisi olarak yorumlanır. Hartree-Fock metodu bütün elektronların etkileşimini dikkate alır. Bu amaçla Hartree-Fock potansiyeli;

$$V_{HF}(r_i) = \sum_{J}^{N} \left(\hat{f}_J(r_1) - \hat{K}_J(r_1) \right)$$
(30)

ile verilir. Burada; $\hat{f}_{j}(r_1)$ Coulomb operatörü

$$\hat{J}_{j}(r_{1}) = \int \left|\psi_{j}(r_{2})\right|^{2} \frac{1}{r_{12}} dr_{2}$$
(31)

ve $\widehat{K}_{I}(r_{1})$ ise exchange operatörüdür.

$$\widehat{K}_{j}(r_{1})\psi(r_{1}) = \int \psi_{j}(r_{2})^{*} \frac{1}{r_{12}}\psi_{i}(r_{2})dr_{2}\psi_{j}(r_{1})$$
(32)

(26) denkleminde i = j için ilgili toplam izinlidir ve bu ilgili toplam terimi, bir elektronlu yük yoğunluğunun kendisi ile Coulomb etkileşimidir, bunun fiziksel bir yorumu yoktur. Ancak i = j için exchange integralinin negatif işaretinden dolayı, bu etkileşim ihmal edilmiştir.

Hartree-Fock yaklaşımı Schrödinger denklemini basitleştirmesine rağmen, kimyasal sistemlerin Hartree-Fock denklem çözümleri hala çok karmaşıktır. Bu amaçla LCAO metodundan faydalanılarak problemin daha da basitleştirilmesi amaçlanmaktadır. LCAO metodunda; her bir moleküler orbital, atomik orbitallerin lineer toplamı şeklinde (1.30) denklemindeki gibi yazılır. LCAO metodunda, enerji denklem (38)' deki c_{pj} lineer toplam katsayılarına göre minimize edildiğinde Roothaan-Hall (Hartree-Fock-Roothaan) denklemleri elde edilir:

$$FC = SC\varepsilon \tag{33}$$

Burada; *F* Fock matrisi, *C* c_{pj} katsayalarından oluşan kare matris, *S* örtme matrisi, ε ise özuyumlu alan (SCF) orbital enerjilerini temsil eden köşegen matristir [11].

1.3.2.Hartree-Fock-Roothaan Yaklaşımı

HF metodu kullanılarak bazı atomların yapıları incelenmiştir, fakat problem çözümü sırasında çok sayıda diferansiyel denklem ile karşılaşıldığından, bu metot pek kullanılmaz. Bu yüzden, HF denkleminin Roothaan tarafından geliştirilen HFR formundan yararlanılır. Öz uyumlu alan da denilen Hartre-Fock metodunda yapılması gereken yaklaşımlardan en fazla kullanılan Roothaan'ın katkılarıyla ortaya çıkan Hartree-Fock-Roothaan yaklaşımıdır. Hartree-Fock-Roothaan (HFR) kabulleri şunlardır.

- 1) Adyibatik Yaklaşım (Born-Oppenheimer Yaklaşımı)
- 2) Varyasyon Metodu
- 3) LCAO (Linear Combination of Atomic Orbitals) Yaklaşımı
- 4) Merkezi Alan Yaklaşıklığı
- 5) Slater Determinantı

1.3.2.1. Adiyabatik Yaklaşım (Born-Oppenheimer Yaklaşımı)

Adyibatik yaklaşımın temel stratejisi, problemi önce dış parametrelerin sabit alındığı hali çözmek ve hesaplamaların sonunda bu parametrelerin zamanla değişimine izin vermektir. Önce elektronun hareketini çekirdeklerin birbirlerinden sabit *R* uzaklığında durgun oldukları varsayımı altında çözülür, sistemin taban durum enerjisini *R*'nin fonksiyonu olarak bulduktan sonra çekirdeklerin denge uzaklığı belirlenir ve grafiğin eğriliğinden de çekirdeklerinden de çekirdeklerin titreşim frekansları elde edilir. Molekül fiziğinde bu teknik Born-Oppenheimer yaklaşımı olarak adlandırılır [12]. Durgun haldeki çekirdeklerin konumları ve hareketleri hakkında bilgi edinilir [13]. Bu yaklaşımdan sonra artık, sistemdeki elektron ve çekirdeklerin kütleleri ve dolayısıyla etkiye cevap verme zamanları birbirinden çok farklı olduğundan sistemin dalga fonksiyonu sadece elektronların serbestlik derecelerine bağlıdır. Çekirdekler klasik mekanik yöntemleri ile belirlenmiş olan yerlerinde elektronlara göre hareketsiz durmaktadır.

Atoma herhangi bir dış alan uygulanmadığı zaman, Hamilton operatörü;

$$\hat{H} = -\frac{1}{2} \sum_{I=1}^{M} \nabla_{I}^{2} - \frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{I=1}^{M} \sum_{i=1}^{N} \frac{Z_{I}}{r_{Ii}} + \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{I=1}^{M-1} \sum_{J>I}^{M} \frac{Z_{I}Z_{J}}{R_{IJ}}$$
(34)
$$= T_{\zeta} + T_{e} + V_{\zeta-e} + V_{e-e} + V_{\zeta-\zeta}$$

olarak ifade edilir. Burada;

 T_{ζ} = Çekirdeklerin Kinetik Enerji Hamilton operatörü T_e = Elektronların Kinetik Enerji Hamilton operatörü

- $V_{\zeta-e}$ = Çekirdek ve elektronların nükleer çekim Hamilton operatörü
- V_{e-e} = Elektronların karşılıklı Coulomb etkileşim Hamilton operatörü
- $V_{\zeta-\zeta}$ = Çekirdekler arası Coulomb etkileşim Hamilton operatörü

Bu yaklaşıma göre çekirdekler elektronlara göre daha ağır parçacıklar olduğu için, yavaş hareket ederler. Elektronların kinetik enerjileri çekirdekten büyüktür. Yani Denklem (34)'de $T_C \ll T_e$ olduğu için T_C terimi ihmal edilir. Çekirdek-çekirdek etkileşmesi V_{C-C} 'de sabit olarak kabul edilir. Bir operatöre sabit eklendiğinde özfonksiyonu etkilemez, özdeğerini değiştirir. Kalan terimlere elektronik Hamiltonyen ya da M tane noktasal çekirdek yükünün alanında hareket eden N elektron için Hamiltonyen denir.

$$\widehat{H} = -\sum_{i=1}^{N} \frac{1}{2} \nabla_{i}^{2} - \sum_{I=1}^{M} \sum_{i=1}^{N} \frac{Z_{I}}{r_{Ii}} + \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
(35)

Toplam Hamiltonian;

$$\widehat{H}_{Toplam} = \widehat{H}_{Elektronik} + \sum_{I=1}^{M-1} \sum_{J>I}^{M} \frac{Z_I Z_J}{R_{IJ}}$$
(36)

şeklinde olur.

1.3.2.2.Varyasyon Metodu

Varyasyon yöntemi başlangıçta tahmin ettiğimiz dalga fonksiyonunu geliştirmeyi ve taban durum enerjisi minimize ederek bulmayı amaçlayan bir yöntemdir. Önce tahmini olan ve deneme fonksiyonu denilen fonksiyonun kalitesinin belirlenmesi için bir kriter ortaya koyar ve sonra bunu en iyi hale getireceğini gösterir. Sistemin taban durum enerjisi E_0 olsun ve Rayleigh oranı denilen

$$E = \langle \hat{H} \rangle = \frac{\int \psi_a^* \ \hat{H} \ \psi_a \ d\nu}{\int \psi_a^* \ \psi_a \ d\nu}$$
(37)

integralini inceleyelim. ψ_d normalize ise denklem (37)'nin paydası 1 olur. Varyasyon metoduna göre $E > E_0$ 'dır. E'nin değeri ne kadar küçük ise, bu enerji taban durumu

enerjisine o kadar yakındır ve bunun sonucu olarak, ψ_d deneme fonksiyonu taban durumu dalga fonksiyonuna o kadar yakındır [8].

Bir sistemin dalga fonksiyonuna ulaşmak için içindeki değişkenler, Rayleigh oranı minimum değerini alıncaya kadar değiştirilir. Sonra *E*'yi minimum yapan değişkenlerin değerleri en iyi dalga fonksiyonunu oluşturmak için kullanılır.

1.3.2.3. LCAO (Linear Combination of Atomic Orbitals) Yaklaşımı

LCAO yaklaşımına göre; moleküler orbitaller, bir elektronlu fonksiyonların sonlu lineer toplamı şeklinde yazılır:

$$\phi_j(\vec{r}) = \sum_p c_{pj} \chi_p(\alpha_p, \vec{r})$$
(38)

olur. Bu ifadede; $\phi_j(\vec{r})$, *j*. nci moleküler orbital ve $\chi_p(\alpha_p, \vec{r})$ ise tek elektronlu dalga fonksiyonu veya baz fonksiyonudur. Hesaplanacak olan atomik veya moleküler özelliğin doğru hesabı, kullanılan baz fonksiyonunun seçimine oldukça duyarlıdır. Literatürde yaygın olarak kullanılan baz fonksiyonları:

Bessel Tipli Orbital (BTO);

$$B_{nlm}(\xi, r) = \sqrt{\frac{2}{\pi}} r^{n+1} K_n(\xi, r) Y_{lm}(\theta, \phi)$$
(39)

Gaussian Tipli Orbital (GTO);

$$G_{nlm}(\xi, r) = A_{nlm} e^{\xi r^2} Y_{lm}(\theta, \phi)$$
(40)

Polinom Tipli Orbital (PTO);

$$P_{nlm}(\xi, r) = Q(\xi - r)r^n Y_{lm}(\theta, \phi)$$
(41)

Slater Tipli Orbital (STO);

$$\chi_{nlm}(\xi, r) = N_n(\xi) r^{n-1} e^{-\xi r} Y_{lm}(\theta, \phi)$$
(42)

şeklinde tanımlanırlar. Bu denklemlerde (*nlm*) kuantum sayıları, *r* atomik yörüngemsinin merkeze olan uzaklığı, ξ ise orbital üsteli ve Hartree-Fock denklemlerinin çözümünden elde edilir. $Y_{lm}(\theta, \phi)$ ise küresel harmonikleri temsil eder [12].

Bu baz fonksiyonlarından en yaygın kullanılanı GTO fonksiyonudur. Gauss baz fonksiyonlarının kullanılmasının en büyük avantajı çok merkezli moleküler integrali hesabında, matematiksel açıdan kolaylık sağlamasıdır. Fakat GTO'ler çekirdeğe yakın ve çekirdekten uzak bölgelerde deneysel sonuçlarla uyum göstermemektedir [14].

Yaygın olarak kullanılan diğer baz fonksiyonu STO' dur. Bu fonksiyonlar çekirdeğe yakın ve çekirdekten uzak bölgelerdeki sınır şartlarında, deneysel sonuçlarla uyum sağlamaktadır [15]. Moleküler sistemlerin fiziksel durumlarını ifade etmek için STO'ler GTO'lar dan daha çok tercih edilmektedir.

1.4.2.4.Merkezi Alan Yaklaşımı

Bu yaklaşıma göre; her bir elektron geride kalan elektronların ve çekirdeğin ortalama potansiyelinde hareket eder. Elektron, diğer elektronlar tarafından itilirken çekirdek tarafından çekilir. Çekirdeği diğer elektronların perdelemesinden dolayı, elektron tarafından hissedilen çekirdek yüküne ya da bir elektron tarafından hissedilen yüke "etkin çekirdek yükü" denir. Etkin çekirdek yükü $Z^* = Z - \sigma_{nlm}$ eşitliği ile verilir. Burada Z gerçek çekirdek yüküdür yani elementin atom numarası ve σ_{nlm} ifadesine perdeleme sabiti denir. Perdeleme sabitine bağlı üstel ifade;

$$\xi_{nlm} = \frac{Z^*}{n^*} = \frac{Z - \sigma_{nlm}}{n^*}$$
(43)

şeklinde ifade edilir. n^* etkin kuantum sayısıdır. Perdeleme sabiti ile ilgili kurallar ilk defa Slater tarafından ifade edilmiştir. Perdeleme sabitleri aşağıdaki deneysel kurallara göre tayin edilmektedir, bu kuralları aşağıdaki gibidir [16].

1. Baş kuantum sayısı yerine etkin kuantum sayısı alınır.

n	1	2	3	4	5	6
n*	1	2	3	3.7	4.0	4.2

2. Orbitaller aşağıdaki gibi gruplara ayrılır.

 $(1s), (2s,2p), (3s,3p), (3d), (4s,4p), (4d), (4f), (5s,5p), \dots$

Burada 1,2,3... sayıları n baş kuantum sayılarını göstermektedir.Her parantez içi bir grubu belirtir.

- **3.** Göz önüne alınan orbitaller *s* ve *p* orbitallerine ait ise aşağıdaki etkiler göz önüne alınır.
 - a. Söz konusu elektrondan daha dış orbitallerde bulunan elektronlar için,
 Slater perdeleme sabiti "0" alınır veya perdelemeye katkısı yoktur.
 - b. Söz konusu elektron ile aynı grupta bulunan elektronlar için 1s elektronu için 0.30, diğer orbital elektronları için 0.35 büyüklüğünde kabul edilir.
 - c. Dikkate alınan elektronun baş kuantum sayısından bir eksik baş kuantum sayılı (*s*,*p*) gruplarında bulunan elektronların perdelemeye katkısı 0.85'dir. Daha alt tabakadaki *s* ve *p* elektronların perdeleme katkısı "1" alınır.
 - **d.** Göz önüne alınan orbitaller *d* ve *f* orbitallerine ait ise, incelenen elektron ile aynı tabakada olsa bile ilgili sabit 1.0 alınır.

1.4.2.5. Slater Determinantı

N-elektronlu bir sistemin dalga fonksiyonu;

$$\psi(\vec{x}_{1}, \vec{x}_{2} \dots \vec{x}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{1}(\vec{x}_{1}) & \phi_{2}(\vec{x}_{1}) & \dots & \phi_{N}(\vec{x}_{1}) \\ \phi_{1}(\vec{x}_{2}) & \phi_{2}(\vec{x}_{2}) & \dots & \phi_{N}(\vec{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{1}(\vec{x}_{N}) & \phi_{2}(\vec{x}_{N}) & \dots & \phi_{N}(\vec{x}_{N}) \end{vmatrix}$$
(44)

şeklinde verilir. Bu determinant Slater determinantı olarak bilinir. Slater determinantının temel özellikleri şunlardır:

- 1) Satırlar bir elektronun farklı orbitallerde bulunma olasılığını gösterir.
- 2) Sütunlar bir orbitalde farklı elektronların bulunma olasılığını gösterir.
- Determinantta iki satırın yer değiştirmesi durumunda determinantın işareti değişir. Bu durum dalga fonksiyonunun anti simetrikliğine karşılık gelir.
- İki tane özdeş sütun varsa determinantın değeri sıfır olur. Bu durum Pauli dışlama ilkesine karşılık gelir.

1.5. Tezin Amacı

Bu tezin amacı; atomların form faktörlerinin Hartree-Fock-Roothaan metodu ile hesaplanmasıdır. Bu amaçla; minimal ve genişletilmiş baz setleri için Slater tipli orbitaller kullanılarak atomların form faktörleri için genel analitik ifadeler elde edilecektir. Daha sonra elde edilen ifadelerin Maple 13 sembolik programlama dilinde programları yapılacaktır. Bu program kullanılarak Z=2-54 aralığında bulunan atomların taban durumları için atomik form faktör değerleri hazırlanan bilgisayar programından yararlanarak hesaplanacak ve literatürdeki varolan değerlerle karşılaştırılacaktır.

Bu çalışma kapsamında ayrıca atomik form faktörlerini hesaplayan ve web üzerinden çalışan başka bir program imkanlar ölçüsünde oluşturulmaya çalışılacaktır.

2. YAPILAN ÇALIŞMALAR

2.1. Giriş

Bu bölümde atomik form faktörleri Hartree-Fock-Roothaan (HFR) metodu ile hesaplanacaktır. Baz seti olarak minimal baz seti (MBS) ve genişletilmiş baz seti (GBS) kullanılacaktır. MBS için Ref. [20,21] ve GBS için ise Ref. [22] çalışmaları kullanılacaktır.

Atomik form faktörlerinin teorik olarak hesaplanması Waller ve Hartree'nin 1929 yılındaki çalışmalarına [17] dayanmaktadır. Waller-Hartree teorisine göre atomik form faktörü,

$$F(\vec{k}) = \int \rho(\vec{r}) e^{i\vec{k}\cdot\vec{r}} d^3r$$
(45)

ile verilir. Burada; $\rho(\vec{r})$ yük yoğunluğu ve \vec{k} ise

$$k = 4\pi \frac{\sin(\theta/2)}{\lambda} \tag{46}$$

şeklinde tanımlanan foton momentum transfer vektörü ve θ ise saçılma açısıdır. Her bir elektronun form faktörüne katkılarının toplamı, toplam atomik form faktörü vereceğinden,

$$F(\vec{k}) = \sum_{s=1}^{Z} \int \phi_s^*(\vec{r}_s) e^{i\vec{k}\vec{r}_s} \phi_s(\vec{r}_s) d^3 r_s$$
(47)

ile yazılabilir. Burada $\phi_s(\vec{r}_s)$ s. nci elektronun dalga fonksiyonudur. Her bir orbitalde iki elektron bulunabileceği dikkate alınırsa denklem (47) aşağıdaki gibi yeniden yazılabilir:

$$F(\vec{k}) = 2\sum_{j=1}^{N} \eta_j \int \phi_j^*(\vec{r}) e^{i\vec{k}\vec{r}} \phi_j(\vec{r}) d^3r$$
(48)

Burada N moleküler orbital sayısını, $\phi_j(\vec{r})$ *j*. nci moleküler orbitali ve η_j ise doluluk oranını temsil eder ve

$$\eta_{j} = \begin{cases} 1/2 & ; \text{ orbital yarı dolu ise} \\ 1 & ; \text{ orbital tam dolu ise} \\ 0 & ; \text{ orbital boş ise} \end{cases}$$
(49)

ile tanımlanır.

2.2. MBS Kullanılarak Atomik Form Faktörlerinin HFR Metodu ile Hesaplanması

Minimal baz seti (MBS) durumunda, her bir molekül orbital bir atomik orbital ile temsil edilir. Yani; $\phi_j(\vec{r}) = \chi_j(\alpha_j, \vec{r})$. Buna göre;

$$F(\vec{k}) = 2 \sum_{j=1}^{N} \eta_j \int \chi_j^*(\alpha_j, \vec{r}) e^{i\vec{k}\cdot\vec{r}} \chi_j(\alpha_j, \vec{r}) d^3r$$

= $2 \sum_{j=1}^{N} \eta_j \int \chi_{n_j l_j m_j}^*(\alpha_j, \vec{r}) e^{i\vec{k}\cdot\vec{r}} \chi_{n_j l_j m_j}(\alpha_j, \vec{r}) d^3r$
= $2 \sum_{j=1}^{N} \eta_j f_{n_j l_j m_j, n_j l_j m_j}(\alpha_j, \alpha_j; k)$ (50)

elde edilir. Burada $f_{nlm,nlm}(\alpha, \alpha; k) \equiv f_{nlm}(\alpha, k)$ fonksiyonu

$$f_{nlm}(\alpha,k) = \int \chi^*_{nlm}(\alpha,\vec{r}) \, e^{i\vec{k}\vec{r}} \chi_{nlm}(\alpha,\vec{r}) d^3r \tag{51}$$

ile tanımlanır. Denklem (51) hesaplanması için atomik orbital olarak kullandığımız STO'lar denklem (42) ile verilen tanımı kullanılırsa

$$f_{nlm}(\alpha,k) = \frac{(2\alpha)^{2n+1}}{\sqrt{2n!}} \int r^{2n-2} e^{-(\alpha+\beta)r} e^{i\vec{k}\vec{r}} S_{lm}^*(\Omega_{\rm r}) S_{lm}(\Omega_{\rm r}) d^3r$$
(52)

elde edilir. Burada $e^{i\vec{k}\vec{r}}$ düzlem dalgası için [18]

$$e^{i\vec{k}\vec{r}} = \sum_{L=0}^{\infty} \sqrt{4\pi(2L+1)} \, i^L \, j_L(kr) S_{L0}(\Omega_{\rm r}) \tag{53}$$

açılımı kullanılırsa:

$$f_{nlm}(\alpha,k) = \frac{(2\alpha)^{2n+1}}{\sqrt{2n!}} \int_0^\infty r^{2n} e^{-(\alpha+\beta)r} j_L(kr) dr$$

$$\times \int_\Omega S_{lm}^*(\Omega_r) S_{lm}(\Omega_r) S_{L0}(\Omega_r) d\Omega$$
(54)

olur. Denklem (54)' de

$$\int_{\Omega} S_{lm}^*(\Omega) S_{lm}(\Omega) S_{LM}(\Omega) d\Omega = \sqrt{\frac{2l+1}{4\pi}} C^L(lm, l'm')$$
(55)

ve

$$\int_{\Omega} S_{lm}^*(\Omega) S_{l'm'}(\Omega) \, d\Omega = \delta_{ll'}, \delta_{mm'}$$
(56)

ifadeleri dikkate alınırsa;

$$f_{nlm}(\alpha,k) = \frac{(2\alpha)^{2n+1}}{\sqrt{2n!}} \sum_{L=0}^{2l} {}^{(2)}(-1)^{l/2} \sqrt{4\pi(2L+1)} C^{L}(lm,lm) D_{2n,l}(2\alpha,k) (57)$$

ifadesi bulunur. Burada $\sum_{k=1}^{(2)}$ sembolü, toplamın ikişer adım aralıklarla yapılacağını ifade eder. $D_{nl}(\alpha, k)$ fonksiyonu ise aşağıdaki gibi tanımlanır:

$$D_{nl}(\alpha,k) = \int_{0}^{\infty} x^{n} e^{-\alpha x} j_{l}(kx) dx$$
(58)

Denklem (58)'de $j_l(kx)$ küresel bessel fonksiyonudur. $D_{nl}(\alpha, k)$ fonksiyonu aşağıdaki gibi ifade edilelebilir [23]:

$$D_{nl}(\alpha,k) = \frac{1}{(k^2 + \alpha^2)^n} \sum_{s=0}^{E(\frac{n-1}{2})} A_{nl}^s(\alpha) k^{l+2s}$$
(59)

Burada $A_{nl}^{S}(\alpha)$ fonksiyonu

$$A_{nl}^{s}(\alpha) = (-1)^{s} (2\alpha)^{n-l-2s-1} (n-l-1)!! F_{2l+2s+1}(n+1) F_{s}(l+s)$$
(60)

ile tanımlanır.
2.3. GBS Kullanılarak Atomik Form Faktörlerinin HFR Metodu ile Hesaplanması

(48) denkleminde $\phi_j(\vec{r})$ moleküler orbitalleri LCAO metoduna göre

$$\phi_j(\vec{r}) = \sum_{p=1}^M c_{jp} \chi_p(\alpha_p, \vec{r})$$
(61)

yazılırsa

$$F(\vec{k}) = 2\sum_{j=1}^{N} \eta_j \sum_{p=1}^{M} c_{jp} \sum_{q=1}^{M} c_{jq} f_{n_p l_j m_j, n_q l_j m_j}(\alpha_p, \alpha_q; k)$$
(62)

elde edilir. Burada $f_{nlm,n'lm}(\alpha,\beta;k)$ fonksiyonu

$$f_{nlm,n'lm}(\alpha,\beta;k) = \int \chi_{nlm}^*(\alpha,\vec{r}) \, e^{i\vec{k}\vec{r}} \chi_{n'lm}(\beta,\vec{r}) d^3r \tag{63}$$

ile tanımlanır. Bu fonksiyonun hesaplanması için $\chi_{nlm}(\alpha, \vec{r})$ STO için (42) denklemi ile verilen tanımı, (55) ve (56) denklemleri dikkate alınırsa,

$$f_{nlm,n'lm}(\alpha,\beta;k) = N_n(\alpha)N_{n'}(\beta)\sum_{L=0}^{2l} {}^{(2)}(-1)^{L/2}\sqrt{4\pi(2L+1)}C^L(lm,lm)$$
$$\times D_{n+n',L}(\alpha+\beta,k)$$
(64)

bulunur.

3. BULGULAR

Hartree-Fock-Roothaan metodu kullanılarak atomların form faktörleri minimal ve genişletilmiş baz setleri için ayrı ayrı hesaplanmış ve bu durumlar için genel-analitik ifadeler elde edilmiştir. Minimal ve genişletilmiş baz seti için atomların form faktörleri sırasıyla (50) ve (62) denklemleri ile verilmiştir. Bu denklemlerin ve bu denklemlerin içerdiği fonksiyonların Maple 13 sembolik programlama dilinde programları yapılmıştır. Atomların minimal ve genişletilmiş baz setleri için ayrı ayrı dosyalar oluşturulmuş ve atomların form faktörleri hesaplanırken bu dosyalardaki veriler program tarafından okunacak şekilde düzenlenmiştir.

Foton momentum transfer vektörünün büyüklüğü $k = 4\pi X$ ve $X = \frac{\sin(\theta/2)}{\lambda}$ olmak üzere, $0 \le x \le 80$ aralığında atomların form faktör değerleri Maple 13 sembolik programlama dilinde hazırlanan program ile elde edilen değerleri ve literatür ile karşılaştırılması aşağıdaki tablolarda verilmiştir.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	2,000000000	2,0000303480	2,000	2,00000
0.2	1,4846063780	1,4603899340	1,460	1,45850
0.4	0,7480996834	0,7383274486	0,738	0.737940
0.6	0,3453130580	0,3528761519	0,353	0,354160
0.8	0,1672426737	0,1772449632	0,177	0.017860
1.0	0,0877407219	0,0952608830	0,095	0,096120
1.2	0,0497243019	0,0545631048	0,055	
1.4	0,0301128375	0,0330371544	0,033	
1.6	0,0192733409	0,0209779035	0,021	
1.8	0,0129152854	0,0138727720	0,014	
2.0	0,0089927570	0,0094989152	0,010	0,0096400
5.0	0,0003732880	0,0002866673		0,00028543
10.0	0,0000361743	0,0000183758		0,000018256
20.0	0,0000038795	0,0000011558		0,0000011505
40.0	0,0000004532	0,000000723		
60.0	0,0000001328	0,000000142		
80.0	0,000000560	0,000000045		0,000000045780

Tablo 1. $_2He$ (1 s^2) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 2.	$_{3}Li \ (1s^{2} 2s^{1})$ atomunun taban durumları için hesaplanan form faktör değ	erleri
	ve literatür ile karşılaştırılması	

$sin(\theta/2)$	Bu Çalışma		Lit	eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	3,000000000	2,9943301830	3,000	3,0000
0.2	1,7720428120	1,7416131210	1,742	1,7425
0.4	1,2875459730	1,2703275020	1,270	1,2688
0.6	0,8320746034	0,8231860426	0,823	0,82550
0.8	0,5113823555	0,5122707194	0,512	0,51230
1.0	0,3131346728	0,3201129492	0,320	0,32046
1.2	0,1954190795	0,2044438369	0,205	
1.4	0,1254268618	0,1342102735	0,134	
1.6	0,0829790912	0,0906190337	0,091	
1.8	0,0565343147	0,0628456041	0,063	
2.0	0,0395807879	0,0446722391	0,044	0,044810
5.0	0,0013030552	0,0015940915		0,0015869
10.0	0,0000846512	0,0001052815		0,00010430
20.0	0,0000053427	0,0000066741		0,0000066279
40.0	0,000003347	0,0000004186		
60.0	0,000000662	0,000000827		
80.0	0,000000209	0,000000262		0,00000026652

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	4,000000000	3,9999711040	4,000	4,0000
0.2	2,0887651250	2,0595625420	2,060	2,0771
0.4	1,5403393650	1,5203000670	1,520	1,5195
0.6	1,1879079040	1,1950723480	1,195	1,1930
0.8	0,8620997923	0,8760235627	0,876	0,87430
1.0	0,6069003382	0,6218500183	0,622	0,62060
1.2	0,4234824275	0,4382905183	0,439	
1.4	0,2966844156	0,3106672448	0,311	
1.6	0,2101741975	0,2228265310	0,223	
1.8	0,1510824854	0,1621589947	0,163	
2.0	0,1103560438	0,1198348169	0,120	0,11982
5.0	0,0043854883	0,0051665034		0,0051521
10.0	0,0002944130	0,0003543323		0,00035136
20.0	0,0000187403	0,0000226903		0,000022575
40.0	0,0000011766	0,0000014268		
60.0	0,000002326	0,000002821		
80.0	0,000000736	0,000000893		0,000000091828

Tablo 3. $_4Be$ ($1s^2 2s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması

Tablo 4.	$_{5}B$ (1s ² 2s ² 2p ¹) atomunun taban durumları için hesaplanan form faktör değerleri
	ve literatür ile karşılaştırılması

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	5,000000000	5,0000170880	5,000	5,0000
0.2	2,7723325560	2,8926612710	2,699	2,7113
0.4	1,7121047960	1,7760293420	1,681	1,6831
0.6	1,4036428180	1,4353882490	1,402	1,4003
0.8	1,1279190720	1,1595412510	1,147	1,1454
1.0	0,8750580658	0,9051865367	0,900	0,89873
1.2	0,6657067644	0,6921791965	0,690	
1.4	0,5025054874	0,5250567814	0,524	
1.6	0,3792916848	0,3982945680	0,398	
1.8	0,2876719390	0,3035908622	0,304	
2.0	0,2198765032	0,2331469639	0,233	0,23265
5.0	0,0115157351	0,0123221742		0,012310
10.0	0,0008923985	0,0008841056		0,00088081
20.0	0,0000679414	0,0000573261		0,000057373
40.0	0,0000055610	0,0000036165		
60.0	0,0000013520	0,0000007156		
80.0	0,0000005079	0,000002265		0,00000023627

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	5,9999999960	6,0000180620	6,000	6,0000
0.2	3,6039810200	3,4007700640	3,560	3,5775
0.4	1,9224917500	1,8052423860	1,948	1,9512
0.6	1,5266749570	1,4658694950	1,537	1,5353
0.8	1,3039496630	1,2895100530	1,322	1,3206
1.0	1,0859328070	1,0982292580	1,114	1,1121
1.2	0,8824535136	0,9051720349	0,914	
1.4	0,7064126774	0,7312572350	0,736	
1.6	0,5612486516	0,5848407759	0,588	
1.8	0,4449017856	0,4661014980	0,468	
2.0	0,3531383236	0,3717127979	0,373	0,37202
5.0	0,0225899148	0,0243510992		0,024330
10.0	0,0017889495	0,0018413842		0,0018364
20.0	0,0001323221	0,0001212019		0,000012157
40.0	0,0000102492	0,0000076761		
60.0	0,0000023970	0,0000015200		
80.0	0,000008753	0,0000004813		0,00000050734

Tablo 5. $_6C$ ($1s^2 2s^2 2p^2$) atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması.

Tablo 6. $_7N$ (1s² 2s² 2p³) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Lite	eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	7,000000000	7,0000255510	7,000	7,0000
0.2	4,7571026780	4,6002804150	4,563	4,5604
0.4	2,3917230810	2,4015959260	2,393	2,3939
0.6	1,6632760350	1,6964290760	1,697	1,6948
0.8	1,4249289840	1,4431607830	1,445	1,4464
1.0	1,2432807070	1,2632051660	1,265	1,2620
1.2	1,0632132920	1,0880689110	1,090	
1.4	0,8926857086	0,9197281311	0,921	
1.6	0,7403825807	0,7670788537	0,769	
1.8	0,6096874280	0,6347142220	0,636	
2.0	0,5003692939	0,5232278144	0,525	0,52370
5.0	0,0383407523	0,0423130818		0,042500
10.0	0,0029845988	0,0033910430		0,004100
20.0	0,0001978445	0,0002270919		0,00024632
40.0	0,0000125519	0,0000144479		
60.0	0,0000024863	0,0000028634		
80.0	0,000007874	0,0000009070		0,0000010425

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	8,000000000	8,0000256010	8,000	8,0000
0.2	5,8878312180	5,7671727750	5,623	5,6197
0.4	3,0761165470	3,1915393600	3,006	3,0031
0.6	1,9001482330	2,0771192840	1,946	1,9445
0.8	1,5355921330	1,6478369940	1,568	1,5667
1.0	1,3558907690	1,4232950880	1,377	1,3763
1.2	1,1986646960	1,2478029750	1,221	
1.4	1,0439017090	1,0857261480	1,070	
1.6	0,8968827460	0,9344576303	0,926	
1.8	0,7631821687	0,7971585943	0,792	
2.0	0,6454355984	0,6760021053	0,674	0,67200
5.0	0,0612509520	0,0669233511		0,066900
10.0	0,0050746553	0,0057129089		0,005200
20.0	0,0003425874	0,0003902157		0,000041908
40.0	0,0000218387	0,0000249578		
60.0	0,0000043297	0,0000049512		
80.0	0,0000013717	0,0000015689		0,0000018006

Tablo 7. $_{8}O(1s^2 2s^2 2p^4)$ atomunun taban durumları için hesaplanan form faktör
değerleri ve literatür ile karşılaştırılması.

Tablo 8. $_9F$ (1s² 2s² 2p⁵) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Lite	eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	9,000000000	8,9999500720	9,000	9,0000
0.2	6,9751017060	6,5888998280	6,709	6,7056
0.4	3,8209583960	3,5684046870	3,759	3,7550
0.6	2,1728399190	2,1530577380	2,309	2,3062
0.8	1,6150869030	1,6281414130	1,735	1,7326
1.0	1,4132150630	1,4135976340	1,482	1,4810
1.2	1,2809378300	1,2799694830	1,324	
1.4	1,1522575630	1,1583671390	1,186	
1.6	1,0220047940	1,0358967200	1,055	
1.8	0,8957449440	0,9150864352	0,928	
2.0	0,7783437992	0,8005706420	0,810	0,80800
5.0	0,0906959361	0,0981480635		0,098200
10.0	0,0080357427	0,0089701754		0,009100
20.0	0,0005537041	0,0006261287		0,00066893
40.0	0,0000354878	0,0000402810		
60.0	0,0000070429	0,0000079999		
80.0	0,0000022320	0,0000025360		0,0000029203

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	10,000000100	9,9999509430	10,000	10,000
0.2	8,1329226740	7,8034049050	7,805	7,8031
0.4	4,8292536320	4,6128211640	4,617	4,6139
0.6	2,7058706420	2,7866888830	2,790	2,7864
0.8	1,8264319030	1,9688511450	1,971	1,9688
1.0	1,5075046080	1,6071262730	1,609	1,6073
1.2	1,3567301080	1,4157073430	1,418	
1.4	1,2397058910	1,2786506840	1,280	
1.6	1,1245684960	1,1564693560	1,518	
1.8	1,0090804410	1,0392236810	1,041	
2.0	0,8969400012	0,9266756475	0,929	0,92660
5.0	0,1265344734	0,1361769390		0,13630
10.0	0,0120320285	0,0133357553		0,013600
20.0	0,0008479566	0,0009522918		0,00151
40.0	0,0000546754	0,0000616447		
60.0	0,0000108632	0,0000122572		
80.0	0,0000034442	0,0000038872		0,0000045067

Tablo 9. $_{10}Ne~(1s^2~2s^2~2p^6)$ atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 10. ${}_{11}Na$ ([*Ne*] 3s¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	11,000000100	11,0000361100	11,000	11,000
0.2	8,5469705640	8,3343414120	8,335	8.3376
0.4	5,7261734010	5,4666079580	5,741	54,647
0.6	3,4319515400	3,3930020760	3,398	3,3942
0.8	2,2081612640	2,3003212080	2,305	2,2994
1.0	1,6744537600	1,7801419850	1,784	1,7819
1.2	1,4401386860	1,5211701240	1,524	
1.4	1,3063120660	1,3650397710	1,367	
1.6	1,1983127590	1,2445006740	1,247	
1.8	1,0946761840	1,1351490550	1,137	
2.0	0,9922193219	1,0302177090	1,032	1,030000
5.0	0,1677934962	0,1809015105		0,18030
10.0	0,0171668429	0,0190557049		0,019000
20.0	0,0012396585	0,0013958525		0,0014786
40.0	0,0000804620	0,0000910026		
60.0	0,0000160066	0,0000181192		
80.0	0,0000050772	0,0000057490	•••	0,0000066813

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	12,000000000	11,9998954000	12,000	12,000
0.2	8,8651795040	8,7327108600	8,735	8,7133
0.4	6,4294556570	6,1892365060	6,194	6,1879
0.6	4,1589430450	4,0522507730	4,059	4,0519
0.8	2,6935565610	2,7220137080	2,729	2,7203
1.0	1,9335903560	2,0165316560	2,022	2,0213
1.2	1,5709523610	1,6556266190	1,660	
1.4	1,3849145250	1,4559988110	1,459	
1.6	1,2646257740	1,3235813480	1,326	
1.8	1,1648125290	1,2163797610	1,219	
2.0	1,0703906460	1,1180368950	1,120	1,1178
5.0	0,2139196005	0,2315118193		0,2324
10.0	0,0235949690	0,0262689313		0,026800
20.0	0,0017490379	0,0019761968		0,0020816
40.0	0,0001143456	0,0001298062		
60.0	0,0000227783	0,0000258822		
80.0	0,0000072286	0,0000082163		0,0000095822

Tablo 11. ${}_{12}Mg$ ([*Ne*] 3s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 12. ₁₃*Al* ([*Ne*] 3s² 3p1) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür		
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]	
0.0	13,000000000	12,9999816800	13,000	13,000	
0.2	9,3912610880	9,3081500360	9,158	9,1552	
0.4	6,9993298560	6,7675427210	9,766	6,7617	
0.6	4,8877776720	4,7023513880	4,713	4,70449	
0.8	3,2815501630	3,2143878030	3,221	3,2115	
1.0	2,3067583410	2,3263530540	2,330	2,3248	
1.2	1,7801978440	1,8386875170	1,841		
1.4	1,5017978720	1,5698638530	1,571		
1.6	1,3407794960	1,4071627630	1,408		
1.8	1,2288357080	1,2912660370	1,292		
2.0	1,1352755530	1,1943071710	1,195	1,1924	
5.0	0,2637990168	0,2866482510		0,28600	
10.0	0,0314197785	0,0350827629		0,034900	
20.0	0,0023950420	0,0027158566		0,0028477	
40.0	0,0001578076	0,0001798659			
60.0	0,0000314830	0,0000359204			
80.0	0,0000099962	0,0000114093		0,000013365	

$sin(\theta/2)$	Bu Çalı	şma	Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	14,000000000	13,9999169700	14,000	14,000
0.2	9,8092215740	9,4691711380	9,673	9,6693
0.4	7,3596156890	7,1642423170	7,202	7,1977
0.6	5,4544577030	5,3076590550	5,312	5,3031
0.8	3,8151486910	3,7403053000	3,750	3,7411
1.0	2,6982218230	2,6888740800	2,702	2,6922
1.2	2,0307410370	2,0630221140	2,076	
1.4	1,6541739360	1,7055336980	1,717	
1.6	1,4380447880	1,4956329280	1,505	
1.8	1,3009591470	1,3596567050	1,367	
2.0	1,1994101400	1,2578321090	1,264	1,2604
5.0	0,3166999794	0,3450510160		0,34500
10.0	0,0407508392	0,0455954856		0,045600
20.0	0,0031993123	0,0036368122		
40.0	0,0002125789	0,0002429665		
60.0	0,0000424783	0,0000486036		
80.0	0,0000134950	0,0000154470		0,000018205

Tablo 13. ₁₄*Si* ([*Ne*] 3s² 3p²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması

Tablo 14. $_{15}P$ ([*Ne*] $3s^2 3p^3$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	15,000000100	14,9999823500	15,000	15,000
0.2	10,5458707300	10,3353894300	10,327	10,320
0.4	7,6731804750	7,5355122090	7,547	7,5406
0.6	5,944444910	5,8213378510	5,829	5,8182
0.8	4,3409520240	4,2726391010	4,284	4,2732
1.0	3,1297291070	3,1107285080	3,122	3,1100
1.2	2,3355309630	2,3539792330	2,364	
1.4	1,8528022810	1,8943821970	1,903	
1.6	1,5656334720	1,6190450190	1,453	
1.8	1,3882100760	1,4469603160	1,333	
2.0	1,2674125990	1,3284916310		1,3287
5.0	0,3713147308	0,4058206789		0,40650
10.0	0,0516312123	0,0578853295		0,057900
20.0	0,0041810592	0,0047611173		
40.0	0,0002803180	0,0003209516		
60.0	0,0000561109	0,0000643155		
80.0	0,0000178368	0,0000204530		0,000024296

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	16,000000000	16,0001357100	16,000	16,000
0.2	11,4002174100	11,3191838800	11,109	11,099
0.4	7,9762199690	7,9480761380	7,856	7,8477
0.6	6,3469371090	6,2557364040	6,254	6,2418
0.8	4,8255662460	4,7724300380	4,790	4,7754
1.0	3,5693080880	3,5556804940	3,570	3,5583
1.2	2,6750465620	2,6910217520	2,699	
1.4	2,0914201450	2,1285501560	2,133	
1.6	1,7261322030	1,7767957580	1,779	
1.8	1,4972058610	1,5557682250	1,557	
2.0	1,3466627130	1,4096926580	1,411	1,4044
5.0	0,4266584558	0,4676603498		0,46780
10.0	0,0640918428	0,0720209605		0,072600
20.0	0,0053605715	0,0061214961		
40.0	0,0003628457	0,0004167839		
60.0	0,0000727646	0,0000836816		
80.0	0,0000231459	0,0000266299		0,000031852

Tablo 15. $_{16}S([Ne] 3s^2 3p^4)$ atomunun taban durumları için hesaplanan form faktördeğerleri ve literatür ile karşılaştırılması.

Tablo 16. $_{17}Cl$ ([*Ne*] $3s^2 3p^5$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür		
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]	
0.0	17,000000000	16,9999091600	17,000	17,000	
0.2	12,2419946500	11,7737989600	11,991	11,980	
0.4	8,2268007880	8,0344887640	8,141	8,1686	
0.6	6,6522870440	6,5541459800	6,595	6,5848	
0.8	5,2550345120	5,2330904850	5,245	5,2273	
1.0	3,9996764030	4,0080846730	4,023	4,0097	
1.2	3,0351045310	3,0509147380	3,070		
1.4	2,3627381780	2,3841416480	2,405		
1.6	1,9187689340	1,9477342610	1,967		
1.8	1,6313244640	1,6684224710	1,686		
2.0	1,4423016310	1,4868880530	1,502	4,4941	
5.0	0,4818271075	0,5285089453		0,52830	
10.0	0,0781369198	0,0879350435		0,87300	
20.0	0,0067581249	0,0077328520			
40.0	0,0004620867	0,0005321002			
60.0	0,0000928483	0,0001070580			
80.0	0,0000295549	0,0000340943		0,000041111	

$\sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	18,000000000	18,0000576900	18,000	18,000
0.2	13,2940035100	12,9374100900	12,949	12,937
0.4	8,6337562250	8,5444608480	8,558	8,5424
0.6	6,9145034370	6,8605820150	6,815	6,8649
0.8	5,6254958600	5,6240485100	5,639	5,6196
1.0	4,4056835320	4,4412029710	4,460	4,4433
1.2	3,4010661760	3,4420327920	3,462	
1.4	2,6568710010	2,6947593040	2,713	
1.6	2,1392851590	2,1767702890	2,192	
1.8	1,7907812790	1,8315403180	1,844	
2.0	1,5572250510	1,6032485090	1,614	1,6034
5.0	0,5361025777	0,5891784309		0,589000
10.0	0,0937553411	0,1056941697		0,10570
20.0	0,0083948047	0,0096241552		
40.0	0,0005801382	0,0006695819		
60.0	0,0001168116	0,0001350136		
80.0	0,0000372101	0,0000430305		0,000052330

Tablo 17. ₁₈*Ar* ([*Ne*] 3s² 3p⁶) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 18. 19	$_{9}K$ ([Ar] 4s ¹)	atomunun tab	an durumları	için he	saplanan	form	faktör	değerleri
	ve literatür ile	karşılaştırılm	ası.					

$sin(\theta/2)$	2) Bu Çalışma		Lite	eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	19,000000100	19,0001460100	19,000	19,000
0.2	14,0401725600	13,7168835100	13,728	13,715
0.4	9,2239644890	9,0446834950	9,061	9,0418
0.6	7,1669642900	7,1094849190	7,125	7,1166
0.8	5,9241913590	5,9451599570	5,961	5,9399
1.0	4,7688205500	4,8382347700	4,859	4,8343
1.2	3,7578170520	3,8321787060	3,855	
1.4	2,9632307660	3,0239033390	3,045	
1.6	2,3817992760	2,4298262030	2,450	
1.8	1,9737685520	2,0160636990	2,033	
2.0	1,6924989820	1,7350670820	1,748	1,7353
5.0	0,5887527944	0,6481648067		0,64820
10.0	0,1108623030	0,1252951645		0,12510
20.0	0,0102858846	0,0118164152		
40.0	0,0007187986	0,0008312705		
60.0	0,0001450489	0,0001679840		
80.0	0,0000462410	0,0000535802		0,000065794

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	20,000000000	19,9999608600	20,000	20,000
0.2	14,5556773600	14,2928919200	14,304	14,293
0.4	9,8702032840	9,6296749150	9,650	9,6295
0.6	7,4637611530	7,3728149140	7,392	7,376
0.8	6,1842312680	6,2098994370	6,228	6,2095
1.0	5,0887527110	5,1875371960	5,209	5,1814
1.2	4,0947626460	4,2083031020	4,233	
1.4	3,2709830260	3,3659134740	3,391	
1.6	2,6383887100	2,7089016400	2,733	
1.8	2,1758867460	2,2290201320	2,250	
2.0	1,8467623840	1,8916799390	1,908	1,8918
5.0	0,6395612642	0,7047979221		0,70510
10.0	0,1294449976	0,1466498467		0,14720
20.0	0,0124559266	0,0143464127		
40.0	0,0008806735	0,0010214509		
60.0	0,0001781256	0,0002069129		
80.0	0,0000568324	0,0000660536		0,000081809

Tablo 19. $_{20}Ca$ ([*Ar*] 4s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 20. ${}_{21}Sc$ ([*Ar*] 3d¹ 4s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	21,000000000	20,9999940900	21,000	21,000
0.2	15,4766012100	15,3867049900	15,135	15,125
0.4	10,4908779200	10,4579801900	10,226	10,206
0.6	7,7767876250	7,8071611360	7,682	7,596
0.8	6,4356881380	6,5149941580	6,460	6,4429
1.0	5,3848960570	5,5157689150	5,501	5,473
1.2	4,4165555180	4,5621216610	4,570	
1.4	3,5781719290	3,7040545080	3,722	
1.6	2,9056932080	3,0004049380	3,023	
1.8	2,3946441170	2,4628185780	2,485	
2.0	2,0190379080	2,0707336550	1,908	2,0692
5.0	0,6881110879	0,7582311344		0,7585
10.0	0,1493901124	0,1695303507		0,17030
20.0	0,0149201314	0,0172161057		
40.0	0,0010678298	0,0012412326		
60.0	0,0002165046	0,0002520707		
80.0	0,0000691372	0,0000805422		0,00010071

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	22,000000000	22,0000124900	22,000	22,000
0.2	16,4216602000	16,1273755700	16,044	16,035
0.4	11,0855820500	10,8468128100	10,852	10,829
0.6	8,0439726370	7,9423831840	8,007	7,9786
0.8	6,6356049200	6,6025539850	6,676	6,6571
1.0	5,6358962000	5,6825127720	5,752	5,7254
1.2	4,7098236750	4,8094711780	4,872	
1.4	3,8744852310	3,9838441410	4,038	
1.6	3,1756824930	3,2683758650	3,316	
1.8	2,6243927430	2,6942497850	2,734	
2.0	2,2060137420	2,2579515500	2,290	2,2651
5.0	0,7343638452	0,8083877832		0,80800
10.0	0,1706097792	0,1938891571		0,19310
20.0	0,0176969967	0,0204437259		
40.0	0,0012827214	0,0014928091		
60.0	0,0002607362	0,0003039441		
80.0	0,0000833372	0,0000972064		0,00012285

Tablo 21. $_{22}Ti$ ([*Ar*] $3d^2 4s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 22. $_{23}V$ ([*Ar*] $3d^3 4s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çah	şma	Lite	eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	23,000000000	21,9998736900	23,000	23,000
0.2	17,4034630100	16,9688187900	17,003	16,933
0.4	11,7621871600	11,4585823900	11,530	11,503
0.6	8,3689840220	8,3637813650	8,373	8,3415
0.8	6,8454650690	6,9181457430	6,892	6,8683
1.0	5,8724337300	5,9943082430	5,872	5,9460
1.2	4,9871173240	5,1457615450	5,139	
1.4	4,1630803960	4,3249268640	4,333	
1.6	3,4474076000	3,5858660790	3,604	
1.8	2,8630161200	2,9692550560	2,992	
2.0	2,4058729690	2,4837424860	2,506	2,4755
5.0	0,7783386621	0,8554318678		0,85540
10.0	0,1929837616	0,2195113072		0,21950
20.0	0,0208015703	0,0240518293		
40.0	0,0015276964	0,0017800092		
60.0	0,0003113574	0,0003634181		
80.0	0,0000996112	0,0001163418		0,00014863

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	24,000000000	24,0000212400	24,000	24,000
0.2	19,2021904300	17,5066786400	18,260	18,254
0.4	12,7670309700	11,7797088300	12,227	12,196
0.6	8,7388822990	8,4939456830	8,756	8,7237
0.8	6,9950134390	6,9635586070	7,118	7,0886
1.0	6,0384184910	6,0728613980	6,172	6,1459
1.2	5,2132195150	5,2990501440	5,372	
1.4	4,4224284840	4,5368457610	4,597	
1.6	3,7071282740	3,8213069090	3,874	
1.8	3,1014040160	3,1977241300	3,244	
2.0	2,6126125540	2,6868555630	2,727	2,6915
5.0	0,8203797340	0,8990935445		0,89940
10.0	0,2164693640	0,2464404139		0,24660
20.0	0,0242598014	0,0280688857		
40.0	0,0018061397	0,0021056792		
60.0	0,0003691296	0,0004311007		
80.0	0,0001182112	0,0001381458		0,00017847

Tablo 23. $_{24}Cr$ ([*Ar*] $3d^5 4s^1$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 24. $_{25}Mn$ ([*Ar*] $3d^5 4s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çah	şma	Lite	ratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	25,000000000	25,0000773500	25,000	25,000
0.2	19,5349145700	19,0469595700	19,012	19,000
0.4	13,4455767700	13,0251080500	13,031	12,997
0.6	9,1991074990	9,2065349220	9,245	9,2101
0.8	7,2321954720	7,3325569810	7,368	7,3331
1.0	6,2265203130	6,3257453260	6,359	6,3312
1.2	5,4309253780	5,5494107850	5,586	
1.4	4,6695789770	4,8079659450	4,849	
1.6	3,9606771970	4,0985031040	4,144	
1.8	3,3409465370	3,4601828970	3,506	
2.0	2,8261285580	2,9199032110	2,963	2,9220
5.0	0,8601388212	0,9402782737		0,94040
10.0	0,2406799485	0,2744318658		0,27360
20.0	0,0280479703	0,0324953281		
40.0	0,0021175964	0,0024717982		
60.0	0,0004340270	0,0005075075		
80.0	0,0001391370	0,0001627974		0,00021280

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	26,000000000	26,0000861700	26,000	26,000
0.2	20,6245047300	20,2279551800	20,046	20,033
0.4	14,4066989200	14,1264355800	13,845	13,809
0.6	9,7640015340	9,9802951270	9,753	9,7165
0.8	7,4978667820	7,8001945040	7,645	7,60442
1.0	6,4029899570	6,6381904730	6,545	6,5150
1.2	5,6240748500	5,8192330860	5,775	
1.4	4,8950391830	5,0792002110	5,070	
1.6	4,2009305190	4,3727220940	4,388	
1.8	3,5757443610	3,7239486840	3,753	
2.0	3,0416104010	3,1599017650	3,195	3,1488
5.0	0,8985528249	0,9788823222		0,97890
10.0	0,2657341854	0,3032230691		0,30480
20.0	0,0322132777	0,0373618399		
40.0	0,0024674883	0,0028848406		
60.0	0,0005072547	0,0005941895		
80.0	0,0001627861	0,0001908209		0,00025212

Tablo 25. $_{26}Fe$ ([*Ar*] $3d^6 4s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 26. $_{27}Co~([Ar] 3d^7 4s^2)$ atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çah	Bu Çalışma		eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	27,000000000	26,9998521400	27,000	27,000
0.2	21,6798963700	21,1595945200	21,093	21,079
0.4	15,3085976600	14,7456852100	14,695	14,659
0.6	10,2786991400	10,2800072200	10,309	10,270
0.8	7,7103913920	7,8838564550	7,955	7,9086
1.0	6,5221062980	6,6515019450	6,738	6,7043
1.2	5,7662956640	5,8591691140	5,950	
1.4	5,0828638040	5,1788707580	5,270	
1.6	4,4176179480	4,5245965310	4,613	
1.8	3,7987619090	3,9051672060	3,989	
2.0	3,2540458460	3,3476510980	3,424	3,3726
5.0	0,9358286237	1,0148475320		1,0154
10.0	0,2914229817	0,3327553791		0,33170
20.0	0,0367547855	0,0426571456		
40.0	0,0028575274	0,0033434624		
60.0	0,0005892590	0,0006908372		
80.0	0,0001893132	0,0002221128		0,00029693

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	28,000000000	27,9999369300	28,000	28,000
0.2	22,7423094700	22,0823613900	22,150	22,135
0.4	16,2612745000	15,4813301200	15,576	15,542
0.6	10,8856245100	10,8391223900	10,909	10,868
0.8	8,0000111040	8,2745488040	8,301	8,2495
1.0	6,6787264080	6,9457749370	6,944	6,9060
1.2	5,9175596910	6,1264934480	6,118	
1.4	5,2681284610	5,4530838670	5,451	
1.6	4,6304192440	4,8092550810	4,819	
1.8	4,0207300110	4,1891044400	4,211	
2.0	3,4691242850	3,6169655940	3,647	3,5901
5.0	0,9724077660	1,0506107550		1,0502
10.0	0,3175999177	0,3628770118		0,36410
20.0	0,0416780278	0,0484024276		
40.0	0,0032900907	0,0038511734		
60.0	0,0006806360	0,0007982572		
80.0	0,0002189225	0,0002569416		0,00034779

Tablo 27. $_{28}Ni$ ([*Ar*] $3d^8 4s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 28. $_{29}Cu$ ([*Ar*] 3d¹⁰ 4s¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çah	Bu Çalışma		eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	29,000000000	28,9999116800	29,000	29,000
0.2	24,6808436000	23,5728125000	23,450	23,538
0.4	17,7321451800	16,2187862000	16,514	16,481
0.6	11,7206905600	11,0794174600	11,507	11,464
0.8	8,3369575420	8,2991277780	8,663	8,6078
1.0	6,7952336630	6,8903782050	7,166	7,1235
1.2	6,0045461660	6,0505274220	6,285	
1.4	5,3955868040	5,3805372410	5,617	
1.6	4,8012147130	4,7481942870	5,005	
1.8	4,2161905150	4,1407746470	4,413	
2.0	3,6699379800	3,5799934470	3,855	3,7933
5.0	1,0087116270	1,0499513470		1,0834
10.0	0,3441426552	0,3627635927		0,39290
20.0	0,0469899951	0,0483889828		
40.0	0,0037678372	0,0038501675		
60.0	0,0007820534	0,0007980515		
80.0	0,0002518433	0,0002568758		0,00040527

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çah	Bu Çalışma Literati		eratür
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	30,000000200	30,0000521900	30,000	30,000
0.2	24,9262751800	24,2709061600	24,283	24,266
0.4	18,3673140200	17,3984636800	17,421	17,392
0.6	12,3684751000	12,1829691000	12,235	12,189
0.8	8,7475111560	9,0515379970	9,108	9,0469
1.0	7,0107704260	7,3651549140	7,417	7,3684
1.2	6,1473043500	6,4039474010	6,453	
1.4	5,5416730790	5,7227499610	5,775	
1.6	4,9724845100	5,1229565710	5,180	
1.8	4,4069336770	4,5470566580	4,610	
2.0	3,8669456740	3,9973107900	4,063	3,9972
5.0	1,0451807650	1,1168829590		1,1165
10.0	0,3709194554	0,4240705489		0,42420
20.0	0,0526931915	0,0612663724		
40.0	0,0042931897	0,0050306907		
60.0	0,0008941423	0,0010497948		
80.0	0,0002882947	0,0003387315		0,00047001

Tablo 29. $_{30}Zn$ ([*Ar*] $3d^{10} 4s^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 30. ${}_{31}Ga$ ([*Ar*] 3d¹⁰ 4s² 4p¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalı	şma	Lite	ratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	31,000000000	31,1457079200	31,00	31,000
0.2	25,4777399400	25,2124845600	24,935	24,907
0.4	19,2325197900	18,3698378500	18,278	18,246
0.6	13,3407898500	12,9733783000	12,996	12,951
0.8	9,3839995840	9,5142172570	9,604	9,5351
1.0	7,3097245820	7,5879667440	7,702	7,6499
1.2	6,2776521550	6,5144792330	6,633	
1.4	5,6377248680	5,8076258680	5,926	
1.6	5,0914881690	5,2225661010	5,432	
1.8	4,5569160460	4,6710511870	4,792	
2.0	4,0368169180	4,1400089700	4,260	4,1907
5.0	1,0823556780	1,1502984930		1,1500
10.0	0,3978190178	0,4556429725		0,45420
20.0	0,0587849600	0,0684228802		
40.0	0,0048681591	0,0057052078		
60.0	0,0010174564	0,0011944284		
80.0	0,0003284719	0,0003858515		0,00054266

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	32,000000000	32,2878553800	32,000	32,000
0.2	25,9216681100	25,6211049500	25,567	25,527
0.4	19,9358373600	19,2570379000	19,047	19,014
0.6	14,2506583900	13,9093793100	13,770	13,723
0.8	10,0644250000	10,2037963800	10,151	10,077
1.0	7,6800206340	8,0444842070	8,0287	7,9681
1.2	6,4519232830	6,8405973870	6,830	
1.4	5,7430196380	6,0890904190	6,076	
1.6	5,1992174080	5,5049933950	5,493	
1.8	4,6893322990	4,9682638760	4,961	
2.0	4,1909269800	4,4479670240	4,447	4,3732
5.0	1,1205118870	1,1951487050		1,1843
10.0	0,4247272325	0,4819965696		0,48680
20.0	0,0652669403	0,0753907228		
40.0	0,0054953867	0,0064000262		
60.0	0,0011527008	0,0013451987		
80.0	0,0003726217	0,0004351828		0,0006239

Tablo 31. $_{32}Ge$ ([*Ar*] $3d^{10} 4s^2 4p^2$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 32. ${}_{33}As$ ([*Ar*] 3d¹⁰ 4s² 4p³) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalı	şma	Lite	eratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	33,000000200	33,1829627700	33,000	33,000
0.2	26,5734152200	26,3905782400	26,235	26,187
0.4	20,5343812200	19,8681921300	19,725	19,691
0.6	15,1021131800	14,5956342700	14,535	14,485
0.8	10,7773919700	10,7107169600	10,741	9,3346
1.0	8,1157189790	8,3189629610	8,396	8,3277
1.2	6,6748527510	6,9590926760	7,050	
1.4	5,8660336420	6,1412461690	6,231	
1.6	5,3020243710	5,5499329290	5,636	
1.8	4,8069132450	5,0325323450	5,117	
2.0	4,3292519230	4,5364083330	4,621	3,3924
5.0	1,1600492960	1,2196975970		1,0330
10.0	0,4515723127	0,5166480561		0,51660
20.0	0,0721438439	0,0841200606		
40.0	0,0061779436	0,0072549046		
60.0	0,0013006881	0,0015301504		
80.0	0,0004210281	0,0004956383		0,00071454

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çalı	Bu Çalışma		Literatür	
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]	
0.0	34,000000000	34,2000212400	34,000	34,000	
0.2	27,3598343900	27,3403581600	26,962	26,908	
0.4	21,0431145800	20,5460582000	20,328	20,289	
0.6	15,8822157500	15,3409961100	15,269	15,216	
0.8	11,5008715600	11,3406886500	11,362	11,281	
1.0	8,6034108760	8,7414595950	8,809	8,7306	
1.2	6,9469994150	7,2146293080	7,299		
1.4	6,0149274560	6,3050988890	6,395		
1.6	5,4084415480	5,6823248590	5,775		
1.8	4,9152338770	5,1674797960	5,262		
2.0	4,4541675680	4,6864374570	4,782	4,7024	
5.0	1,2012511440	1,2580703780		1,2564	
10.0	0,4782371146	0,5470551620		0,54680	
20.0	0,0794056349	0,0926961572			
40.0	0,0069175946	0,0081369356			
60.0	0,0014619640	0,0017230301			
80.0	0,0004738899	0,0005589316		0,0081530	

Tablo 33. ${}_{34}Se$ ([*Ar*] $3d^{10} 4s^2 4p^4$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 34. ${}_{35}Br$ ([*Ar*] $3d^{10} 4s^2 4p^5$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	35,000000000	35,1276432400	35,000	35,000
0.2	28,0679570900	27,6039644900	27,749	27,690
0.4	21,4519033800	20,8707806100	20,874	20,829
0.6	16,5876907200	16,0027757200	15,958	15,902
0.8	12,2221590600	11,9790592900	12,001	11,918
1.0	9,1320192980	9,1845362700	9,262	9,1754
1.2	7,2660078700	7,4811169870	7,580	
1.4	6,1942054570	6,4719098410	6,574	
1.6	5,5247779600	5,8148886370	5,913	
1.8	5,0190539980	5,3026228080	5,398	
2.0	4,5679504940	4,8374202580	4,932	4,8492
5.0	1,2444324750	1,2957681070		1,2961
10.0	0,5047027758	0,5767864828		0,57690
20.0	0,0870612061	0,1017218973		
40.0	0,0077181192	0,0090874701		
60.0	0,0016375284	0,0019319102		
80.0	0,0005315569	0,0006275963		0,00092702

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çalı	şma	Literatür	
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	36,000000000	36,1699320700	36,000	36,000
0.2	28,9945342800	28,7122419000	28,590	28,530
0.4	21,8895734400	21,5224651500	21,388	21,334
0.6	17,2103241000	16,6902658600	16,594	16,535
0.8	12,9202447400	12,6509045000	12,645	12,558
1.0	9,6864693710	9,6860525380	9,752	9,6573
1.2	7,6262441210	7,7953699690	7,898	
1.4	6,4062998290	6,6595797780	6,773	
1.6	5,6571118750	5,9436995720	6,056	
1.8	5,1243342750	5,4190958580	5,528	
2.0	4,6747036110	4,9645625010	5,071	4,9853
5.0	1,2897440280	1,3396920920		1,3391
10.0	0,5308611231	0,6063417922		0,60570
20.0	0,0950941098	0,1111985533		
40.0	0,0085808609	0,0101098018		
60.0	0,0018278668	0,0021577492		
80.0	0,0005942128	0,0007019775		0,0010506

Tablo 35. $_{36}Kr$ ([Ar] $3d^{10} 4s^2 4p^6$)atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 36. $_{37}Rb$ ([Kr] $5s^1$) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Lite	ratür
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	37,000000200	36,0839962800	37,000	37,000
0.2	29,7861023600	28,3744788200	29,368	29,327
0.4	22,4190915600	21,0294746300	21,934	21,862
0.6	17,7401680700	16,5373324800	17,167	17,112
0.8	13,5765813200	12,9038968200	13,272	13,174
1.0	10,2566056700	10,0786126500	10,270	10,174
1.2	8,0235101130	8,1582982620	8,252	
1.4	6,6523687460	6,9478187600	6,996	
1.6	5,8098178210	6,1701217820	6,210	
1.8	5,2360253970	5,6095217970	5,656	
2.0	4,7782928370	5,1394522310	5,200	5,1121
5.0	1,3371731000	1,3857452700		1,3853
10.0	0,5564155761	0,6352529805		0,63560
20.0	0,1034259449	0,1211340939		
40.0	0,0095003809	0,0112005809		
60.0	0,0020319711	0,0023994086		
80.0	0,0006615503	0,0007816460		0,0011869

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çah	şma	Lite	ratür
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	38,000000000	36,9943555000	38,000	38,000
0.2	30,3725578000	28,8905977000	29,988	29,942
0.4	23,0081559400	21,4558449200	22,522	22,438
0.6	18,2316817700	16,8896138800	17,696	17,636
0.8	14,1873843600	13,3634334000	13,872	13,776
1.0	10,8287437000	10,5249139400	10,806	10,699
1.2	8,4496203270	8,5005906700	8,640	
1.4	6,9302515590	7,1832361510	7,249	
1.6	5,9845637270	6,3362744920	6,376	
1.8	5,3570943600	5,7457330330	5,785	
2.0	4,8812281710	5,2719345470	5,323	5,2316
5.0	1,3871856040	1,4354608980		1,4355
10.0	0,5818008750	0,6634916964		0,66470
20.0	0,1121824675	0,1315428759		
40.0	0,0104934519	0,0123874551		
60.0	0,0022537686	0,0026648524		
80.0	0,0007348916	0,0008694677		0,0013370

Tablo 37.	₃₈ Sr	([Kr] $5s^2$) atomunun taban durumları için hesaplanan form faktör
	değe	rleri ve literatür ile karşılaştırılması.

Tablo 38. $_{39}Y$ ([Kr] 4d¹ 5s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	39,000000200	38,9997566500	39,000	39,000
0.2	31,6072763400	30,9072259900	30,631	30,594
0.4	24,0352374900	23,1287461700	23,071	22,990
0.6	19,1647781500	18,1620686700	18,204	18,134
0.8	15,2766124600	14,3583367200	14,443	14,358
1.0	11,8810521400	11,2321552400	11,339	11,242
1.2	9,2688070900	8,9401809190	9,046	
1.4	7,4663435820	7,4290019120	7,523	
1.6	6,2865125430	6,4716677270	6,554	
1.8	5,5065965730	5,8354300730	5,914	
2.0	4,9521604460	5,3555695530	5,440	5,3463
5.0	1,4390772970	1,4897057140		1,4890
10.0	0,6069186878	0,6909369609		0,69140
20.0	0,1213099436	0,1423629335		
40.0	0,0115573181	0,0136563098		
60.0	0,0024928809	0,0029504317		
80.0	0,0008141424	0,0009641715		0,0015019

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çalı	şma	Literatür	
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	40,000000000	40,0001028500	40,000	40,000
0.2	32,3060521400	31,4069660900	31,363	31,322
0.4	24,2265514700	23,4507729600	23,606	23,518
0.6	19,2655785800	18,5498123700	18,693	18,614
0.8	15,5097022900	14,8780325400	14,996	14,911
1.0	12,1684112300	11,7642844000	11,883	11,778
1.2	9,5310927130	9,3693480910	9,486	
1.4	7,6803764530	7,7255337370	7,853	
1.6	6,4592550950	6,6637826600	6.760	
1.8	5,6537053170	5,9671270810	6.059	
2.0	5,0875741460	5,4634596260	5.558	5,459
5.0	1,4937214570	1,5466653800		1,5461
10.0	0,6314267339	0,7175739223		0,71750
20.0	0,1307664070	0,1535956857		
40.0	0,0126915202	0,0150120694		
60.0	0,0027494781	0,0032575923		
80.0	0,0008993941	0,0010662811		0,0016826

Tablo 39. $_{40}Zr$ ([Kr] 4d² 5s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 40. $_{41}Nb$ ([Kr] 4d⁴ 5s¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	41,000000000	40,9999907200	41,000	41,000
0.2	32,9977552000	31,8867695500	32,305	32,2266
0.4	24,6154616200	24,0565545100	24,077	23,980
0.6	19,6216187800	19,1462996800	19,156	19,072
0.8	15,9523231300	15,4619116300	15,533	15,442
1.0	12,6410370600	12,3043979900	12,427	12,313
1.2	9,9481039740	9,8045296060	9,945	
1.4	8,0034456280	8,0359723050	8,169	
1.6	6,6929647740	6,8723376730	6,989	
1.8	5,8223987350	6,1125496370	6,216	
2.0	5,2180210170	5,5805256780	5,680	5,5763
5.0	1,5507160610	1,6097287180		1,6078
10.0	0,6554883562	0,7434457471		0,74310
20.0	0,1405538577	0,1652231797		
40.0	0,0138993248	0,0164566409		
60.0	0,0030245451	0,0035870594		
80.0	0,0009910069	0,0011760765		0,0018802

$sin(\theta/2)$	Bu Çah	şma	Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	42,000000000	41,9998445500	42,000	42,000
0.2	34,4061344200	33,1726385100	33,195	33,156
0.4	25,1276444800	24,4969977100	24,620	24,506
0.6	19,9413174000	19,4928043600	19,595	19,494
0.8	16,3812930500	15,9298510600	16,036	15,932
1.0	13,1424254600	12,8339527600	12,968	12,837
1.2	10,4139649400	10,2799139300	10,430	
1.4	8,3746777010	8,3976571780	8,542	
1.6	6,9629434600	7,1217531240	7,251	
1.8	6,0122247420	6,2810506380	6,397	
2.0	5,3560781020	5,7037335330	5,813	5,6982
5.0	1,6099194070	1,6747752580		1,6740
10.0	0,6790931587	0,7683890097		0,76750
20.0	0,1506603922	0,1772219578		
40.0	0,0151829201	0,0179917245		
60.0	0,0033188568	0,0039395503		
80.0	0,0010892756	0,0012938403		0,0020961

Tablo 41. ₄₂*Mo* ([Kr] 4d⁵ 5s¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 42. ${}_{43}Tc$ ([Kr] 4d⁵ 5s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	43,000000000	42,7993920500	43,000	43,000
0.2	34,7454629600	33,5358280400	33,936	33,897
0.4	25,7094963100	24,8731088800	25,229	25,120
0.6	20,3592322000	19,6484698700	20,012	19,904
0.8	16,8185936100	16,0611382900	16,477	16,377
1.0	13,6394671200	13,0227644500	13,466	13,339
1.2	10,8906424600	10,4884205800	10,900	
1.4	8,7679044950	8,5803590500	8,919	
1.6	7,2564630570	7,2649596600	7,521	
1.8	6,2204254800	6,3947512750	6,582	
2.0	5,5046571310	5,8052853060	5,946	5,8283
5.0	1,6703049010	1,7478725280		1,7445
10.0	0,7023223508	0,7925604201		0,79170
20.0	0,1610804762	0,1896240371		
40.0	0,0165446174	0,0196249540		
60.0	0,0036332138	0,0043171249		
80.0	0,0011945045	0,0014203031		0,0023313

$sin(\theta/2)$	Bu Çah	şma	Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	44,0000000000	43,9998393000	44,000	44,000
0.2	35,7156048400	34,8880709400	35,088	35,066
0.4	26,3624267600	25,9075508500	25,749	25,633
0.6	20,7520174600	20,4391403700	20,403	20,284
0.8	17,2295984000	16,8402412500	16,922	16,816
1.0	14,1218143400	13,8215554700	13,968	13,834
1.2	11,3697802700	11,2168057900	11,385	
1.4	9,1776643360	9,1613345420	9,323	
1.6	7,5730500440	7,6807382310	7,823	
1.8	6,4513690850	6,6718449210	6,794	
2.0	5,6715634740	5,9867181670	6,097	5,9707
5.0	1,7341911570	1,8188491730		1,8183
10.0	0,7249562101	0,8159955850		0,81640
20.0	0,1717772723	0,2023497271		
40.0	0,0179855755	0,0213507854		
60.0	0,0039682579	0,0047188868		
80.0	0,0013069573	0,0015552167		0,025872

Tablo 43. ${}_{44}Ru$ ([Kr] 4d⁷ 5s¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 44. $_{45}Rh$ ([*Kr*] 4d⁸ 5s¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	45,000000000	44,9998378000	45,000	45,000
0.2	36,6686943600	35,6654832900	36,086	36,069
0.4	26,9626590800	26,2248362600	26,363	26,244
0.6	21,0728399400	20,6221838600	20,798	20,666
0.8	17,5780149300	17,1278292100	17,326	17,212
1.0	14,5671794600	14,2382084800	14,440	14,300
1.2	11,8375496100	11,6704482900	11,866	
1.4	9,5939273040	9,5618394930	9,743	
1.6	7,9048530790	7,9872004740	8,148	
1.8	6,6988362810	6,8866548280	7,028	
2.0	5,8517024500	6,1338104710	6,262	6,1262
5.0	1,7988389140	1,8930525220		1,8953
10.0	0,7472416822	0,8385197629		0,84010
20.0	0,1827573805	0,2154009489		
40.0	0,0195082562	0,0231780820		
60.0	0,0043248187	0,0051474562		
80.0	0,0014269497	0,0016995330		0,0028652

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	46,000000000	45,9680170600	46,000	46,000
0.2	37,6328186300	37,2459238500	37,286	37,274
0.4	27,6080988000	26,8259684900	26,961	26,836
0.6	21,4363488900	21,0384833600	21,177	21,036
0.8	17,9380302300	17,5884533400	17,711	17,589
1.0	15,0082924800	14,7510425400	14,893	14,747
1.2	12,3040902200	12,1739959800	12,342	
1.4	10,0184387100	9,9945668170	10,173	
1.6	8,2520083500	8,3206236020	8,492	
1.8	6,9637792590	7,1253385880	7,282	
2.0	6,0472959860	6,3006810390	6,443	6,2974
5.0	1,8648318640	1,9744005860		1,9751
10.0	0,7691294017	0,8603237356		0,86180
20.0	0,1939986921	0,2287230039		
40.0	0,0211142514	0,0251011611		
60.0	0,0047036316	0,0056017873		
80.0	0,0015547786	0,0018529433		0,0031668

Tablo 45. $_{46}Pd$ ([*Kr*] 4d¹⁰) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 46. $_{47}Ag~([Kr] 4d^{10} 5s^1)$ atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	47,000000000	46,9998663500	47,000	47,000
0.2	38,6380508100	38,1331943300	38,154	38,137
0.4	28,2909592200	27,5702034100	27,707	27,576
0.6	21,7596429700	21,4432112300	21,607	21,440
0.8	18,2238774700	17,9232196800	18,069	17,927
1.0	15,3934081500	15,1565340400	15,316	15,156
1.2	12,7438191400	12,6275034700	12,813	
1.4	10,4386445400	10,4229014100	10,623	
1.6	8,6081318390	8,6729821480	8,869	
1.8	7,2432622740	7,3887903580	7,569	
2.0	6,2576376200	6,4883817810	6,651	6,4852
5.0	1,9319151940	2,0577103870		5,0585
10.0	0,7906532907	0,8814816035		0,88220
20.0	0,2054868244	0,2424068321		
40.0	0,0228054049	0,0271346582		
60.0	0,0051054880	0,0060855921		
80.0	0,0016907608	0,0020167403		0,0034933

λ MBS (Denk. 50) GBS (Denk. 62) Ref.[24] 0.0 48,000000000 48,0001722500 48,000 0.2 39,7225077200 38,8869210800 38,930 0.4 29,1425973700 28,3415250800 28,468 0.6 22,1973331200 21,8731759900 22,063 0.8 18,5319690900 18,2167111400 18,405 1.0 15,7625661800 15,5062320500 15,698 1.2 13,1684656600 13,0428305200 13,253 1.4 10,8558325000 10,8373441100 11,060 1.6 8,9717366770 9,0313529740 9,249 1.8 7,5358342410 7,6704292100 7,867 2.0 6.4821418580 6.6989829300 6.871	Ref.[5] 48,000 38,890 28,343
0.048,00000000048,000172250048,0000.239,722507720038,886921080038,9300.429,142597370028,341525080028,4680.622,197333120021,873175990022,0630.818,531969090018,216711140018,4051.015,762566180015,506232050015,6981.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	48,000 38,890 28,343
0.239,722507720038,886921080038,9300.429,142597370028,341525080028,4680.622,197333120021,873175990022,0630.818,531969090018,216711140018,4051.015,762566180015,506232050015,6981.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	38,890 28,343
0.429,142597370028,341525080028,4680.622,197333120021,873175990022,0630.818,531969090018,216711140018,4051.015,762566180015,506232050015,6981.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	28,343
0.622,197333120021,873175990022,0630.818,531969090018,216711140018,4051.015,762566180015,506232050015,6981.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	- ,
0.818,531969090018,216711140018,4051.015,762566180015,506232050015,6981.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	21,883
1.015,762566180015,506232050015,6981.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	18,249
1.213,168465660013,042830520013,2531.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	15,533
1.410,855832500010,837344110011,0601.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	
1.68,97173667709,03135297409,2491.87,53583424107,67042921007,8672.06,48214185806,69898293006,871	
1.8 7,5358342410 7,6704292100 7,867 2.0 6.4821418580 6.6989829300 6.871	
2.0 6.4821418580 6.6989829300 6.871	
0,4021410300 0,000020300 0,071	6,6907
5.0 1,9998463520 2,1425371440	2,1445
10.0 0,8118417040 0,9019759365	0,90210
20.0 0,2172030938 0,2563823618	
40.0 0,0245829343 0,0292847096	
60.0 0,0055310514 0,0066015052	
80.0 0,0018351735 0,0021919694	0,0038464

Tablo 47. $_{48}Cd$ ([*Kr*] 4d¹⁰ 5s²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 48. $_{49}In$ ([*Kr*] 4d¹⁰ 5s² 5p¹) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	MBS (Denk. 50)		GBS (Denk. 62)	
λ	MBS (Denk. 50)	GBS (Denk. 62)	MBS (Denk. 50)	GBS (Denk. 62)
0.0	49,000000000	49,0699546200	49,000	49,000
0.2	40,3222107500	39,7609623800	39,639	39,579
0.4	30,0585696800	29,1419065800	29,247	29,125
0.6	22,7699135500	22,3616601600	22,552	22,360
0.8	18,8295455000	18,5587938000	18,736	18,565
1.0	16,0701935400	15,8794105100	16,053	15,882
1.2	13,5492225900	13,4766974500	13,670	
1.4	11,2571952100	11,2775224600	11,492	
1.6	9,3384172860	9,4174783500	9,639	
1.8	7,8405405020	7,9718045860	8,184	
2.0	6,7211546630	6,9156478250	7,110	6,91444
5.0	2,0681420510	2,2325951260		2,2330
10.0	0,8327757025	0,9216959103		0,92180
20.0	0,2291443262	0,2705645170		
40.0	0,0264500857	0,0315369203		
60.0	0,0059814845	0,0071465779		
80.0	0,0019884665	0,0023777286		0,0042277

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çalışma		Literatür	
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref.[5]
0.0	50,000000000	50,0507661400	50,000	50,000
0.2	40,7906007500	40,0715280200	40,302	40,212
0.4	30,8954460000	29,9102960000	30,011	29,894
0.6	23,3838593600	22,8789647400	23,081	22,881
0.8	19,1552646600	18,8712847500	19,073	18,885
1.0	16,3630847800	16,1963146800	16,384	16,205
1.2	13,9045469600	13,8620299900	14,062	
1.4	11,6435043800	11,6921569900	11,913	
1.6	9,7033763930	9,8016700460	10,034	
1.8	8,1525800700	8,2880389420	8,516	
2.0	6,9715090280	7,1554124130	7,367	7,1560
5.0	2,1366291250	2,3226986400		2,3238
10.0	0,8534206178	0,9410789370		0,94070
20.0	0,2412605805	0,2849964014		
40.0	0,0284031232	0,0338828772		
60.0	0,0064562923	0,0077164074		
80.0	0,0021505295	0,0025721408		0,0046388

Tablo 49. ${}_{50}Sn$ ([*Kr*] 4d¹⁰ 5s² 5p²) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 50. ${}_{51}Sb$ ([*Kr*] 4d¹⁰ 5s² 5p³) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	51,000000000	51,0447097600	51,000	51,000
0.2	41,4248732900	40,8779845600	40,955	40,843
0.4	31,6504104800	30,6415998300	30,745	30,628
0.6	24,0350581900	23,4398603400	23,646	23,440
0.8	19,5143978200	19,2128411000	21,253	19,218
1.0	16,6466629200	16,5015043000	16,696	16,507
1.2	14,2342800400	14,2229653300	14,429	
1.4	12,0114118800	12,0922056100	12,321	
1.6	10,0630372000	10,1875911200	10,341	
1.8	8,4693856390	8,6184671310	8,861	
2.0	7,2318419510	7,4146270140	7,642	7,4147
5.0	2,2052104310	2,4148998140		2,4165
10.0	0,8738607857	0,9599946125		0,95910
20.0	0,2535586777	0,2996260788		
40.0	0,0304468703	0,0363483381		
60.0	0,0069570586	0,0083212039		
80.0	0,0023219630	0,0027792850		0,0050817

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	52,000000200	52,0476215900	52,000	52,000
0.2	42,1174150400	41,7578949200	41,623	41,500
0.4	32,3326572700	31,3487853000	31,424	31,314
0.6	24,7072848000	24,0238986100	24,226	24,029
0.8	19,9070707100	19,5756902300	19,783	19,574
1.0	16,9265661000	16,7954936600	16,986	16,795
1.2	14,5390931200	14,5580735200	14,759	
1.4	12,3566470800	12,4721904600	12,698	
1.6	10,4115665000	10,5670572800	10,811	
1.8	8,7858021030	8,9539181130	9,201	
2.0	7,4984831510	7,6843847860	7,921	7.6893
5.0	2,2738330740	2,5063376950		2,51044
10.0	0,8941364909	0,9787594387		0,97790
20.0	0,2660207937	0,3144615068		
40.0	0,0146990557	0,0389301067		
60.0	0,0074844583	0,0089597097		
80.0	0,0025030627	0,0029986556		0,0055581

Tablo 51. ${}_{52}Te$ ([*Kr*] 5s² 4d¹⁰5p⁴) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Tablo 52. ${}_{53}I$ ([*Kr*] 5s² 4d¹⁰5p⁵) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

$sin(\theta/2)$	Bu Çalışma		Literatür	
λ	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	52,9999999800	53,2448844200	53,000	53,000
0.2	42,7205301800	42,2118263600	42,340	42,195
0.4	32,9245500300	32,1394233300	32,075	31,950
0.6	25,3901565700	24,8474281300	24,851	24,636
0.8	20,3376845800	20,1456146100	20,193	19,956
1.0	17,2191216300	17,2681032000	17,293	1,7076
1.2	14,8348119900	15,0741442300	15,090	
1.4	12,6899964800	13,0503844600	13,082	
1.6	10,7557589200	11,1622950300	11,214	
1.8	9,1063684770	9,5157864050	9,576	
2.0	7,7746918850	8,1825791040	8,239	7,9779
5.0	2,3419249710	2,6315963370		2,6408
10.0	0,9142978538	0,9773497429		0,99730
20.0	0,2786295882	0,3288447984		
40.0	0,0348102195	0,0417186098		
60.0	0,0080391494	0,0096583587		
80.0	0,0026941216	0,0032397107		0,0060699

$\frac{\sin(\theta/2)}{\lambda}$	Bu Çalışma		Literatür	
	MBS (Denk. 50)	GBS (Denk. 62)	Ref. [24]	Ref. [5]
0.0	54,000000000	54,0000779400	54,000	54,000
0.2	43,5430388400	42,9326452900	43,088	42,934
0.4	33,4653766300	32,5357079500	32,671	32,538
0.6	26,0610685700	25,2534054200	25,740	25,250
0.8	20,7986914100	20,3648367400	20,618	20,368
1.0	17,5211241000	17,3558309700	17,591	17,357
1.2	15,1159518100	15,1605461800	15,390	
1.4	13,0025340800	13,1828886100	13,432	
1.6	11,0854417000	11,3190235700	9,940	
1.8	9,4219166230	9,6560288350	8,556	
2.0	8,0534493250	8,2771991480		8,2735
5.0	2,4096870340	2,6966560590		2,6992
10.0	0,9343902160	1,0144947750		1,0163
20.0	0,2913718539	0,3445051784		
40.0	0,0371320733	0,0444325979		
60.0	0,0086219532	0,0103374986		
80.0	0,0028954931	0,0034742579		0,006192

Tablo 53. ${}_{54}Xe$ ([*Kr*] 5s² 4d¹⁰5p⁶) atomunun taban durumları için hesaplanan form faktör değerleri ve literatür ile karşılaştırılması.

Şekil 5. 42Mo atomunun form faktör değişimi.

Şekil 6. 43Tc atomunun form faktör değişimi

•

Şekil 7. 44Ru atomunun form faktör değişimi.

Şekil 8.45Rh atomunun form faktör değişimi

Şekil 9.46Pd atomunun form faktör değişimi.

Şekil 10. 47Ag atomunun form faktör değişimi.

Şekil 11. 48Cd atomunun form faktör değişimi.

Şekil 12. 49Kr atomunun form faktör değişimi.

4. TARTIŞMA

Bu çalışmada; saçılma deneylerinde ortaya çıkan atomik form faktörleri Hartree-Fock-Roothaan metodu ile incelenmiştir. Slater tipli orbitaller kullanılarak minimal ve genişletilmiş baz seti durumları için atomik form faktörler incelenmiş ve genel analitik ifadeler elde edilmiştir. Atomik form faktörleri için elde edilen ifadeler; Gaunt katsayıları ve bazı yardımcı moleküler integraller içermektedir.

Atomik form faktörleri için elde edilen ifadelerin doğruluğundan emin olmak için içerdiği bütün fonksiyonlar detaylı bir şekilde incelenmiş ve atomik form faktörler için HFR metodu ile bulunan ifadelerin minimal ve genişletilmiş baz setleri durumu için ayrı ayrı Maple 13 sembolik programlama dilinde programları yapılmıştır. Oluşturulan bu bilgisayar programından yararlanarak, *Z*=2-54 aralığındaki atomların taban durumları için form faktör değerleri hesaplanmış ve literatürde var olan değerlerle karşılaştırılmıştır. Sonuç olarak, hesaplanan atomik form faktör değerlerinin literatürdeki değerlerle uyumlu olduğu gözlenmiştir. Bunun yanı sıra, foton momentum transfer değeri büyüdükçe literatürle uyumun azaldığı gözlenmiştir.

5. SONUÇ VE ÖNERİLER

Foton momentum değeri büyüdükçe literatürle uyum azaldığı için, atomik form faktörleri için relativistik katkı da ilave edilerek literatürdeki değerlerle uyum arttırılabilir. Ayrıca deneysel verilerle bazı $X = \frac{\sin(\theta/2)}{\lambda}$ değerleri ölçülemediği için yapılan çalışmadaki teorik veriler kullanılabilinir.

KAYNAKLAR

- [1] Bransden, B.H., Joachain, C.J, Atom ve Molekül Fiziği, (Çev.:Köksal, F., Gümüş, H.), 2.Baskı, Bilim Yayıncılık., Ankara s. 1, 1999.
- [2] Özdoğan, T., Kara, M., Gümüş, S., Orbay, M., Fen Bilgisi ve Fizik Öğretmenleri için Modern Fiziğe Giriş Problem Çözümlü, 2. Baskı, Pegem Akademi, Ankara, s.110, 2009.
- [3] Bertin, E.P., Principles and Practica of X-ray Spectrometric Analysis, Second Edition, Plenum Press, London, 1975.
- [4] Baltaş, H.,YBaCuO ve BiPbSrCaCuO Süperiletkenlerinin Soğurma Katsayılarının İncelenmesi, Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, 2006.
- [5] Hubbell, J.H., Veigele, W.J., Briggs, E.A., Brown, R.T., Cromer, D.T., Howerton, R.J., Atomic form factors, incoherent scattering functions and photon scattering cross-sections. J. Phys. Chem. Data, 4 (1975) 47.
- [6] Arndt, U.W., Creagh, D.C., Deslattes, R.D., Hubbel, J.H., Kessler Jr. E.G., Lindroth, E. International Tables for Crystallography, Springer Press, England, 2006.
- [7] Çevik, U., Doğu Karadeniz Dip Tortularının X-Işını Floresans Yöntemiyle Belirlenmesi, Yüksek Lisans Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon, 1994.
- [8] Köksal, F., Köseoğlu, R., Fenciler İçin Kuantum Mekaniği, 1.Baskı, Nobel Yayın Dağıtım, Ankara, 2006.
- [9] Wissmann, F., ComptonScattering, Springer-Verlag Press, Berlin, 2004.
- [10] Hartree, D. R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field Part I. Theory and Methods. Proc. <u>Cambridge Philos. Soc.</u>, 24 (1928) 89.
- [11] Helgaker, T., Jorgensen, P., Olsen, J., Helgaker, T., Molecular electronic-structure theory Wiley, New York, 2000.
- [12] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. <u>Ann. Phys.</u> (Leipzig), 84 (1927) 457.
- [13] Griffiths, D.J., Introduction to Quantum Mechanics, Prentice Hall, USA, 1994.
- [14] Barnett, M.P., Two-Center Nonexchange Integrals Over Slater Orbitals. J.Chem. Phys. 113, 9419, 2000
- [15] Jones, H.W., Computer-Generated Formulas for Two-Center Coulomb Integrals Over Slater Type Orbitals. Int. J. Quant. Chem. 20, (1981) 1217.
- [16] Slater, JC., Atomic Shielding Constants, Phys. Rev., 36 (1) (1930) 57-64.
- [17] Waller, I., Hartree, D.R., On the Intensity of Total Scattering of X-Rays, <u>Proc. Roy.</u> <u>Soc</u>. (London) Ser. A., (1929) 124, 119.
- [18] Abaramowitz M., Stegun, I. A., Handbook of Mathematical Functions, Dover, NY, 1965.
- [19] Arfken, G.B., Weber, H.J., Mathematical Methods for Physicists, 3rd ed, Academic Press, 2001.
- [20] Clementi, E., Raimondi, D.L., Atomic Screening Constants from SCF Functions, J. Chem. Phys., 38 (1963) 2686.
- [21] Clementi, E., Raimondi, D.L., Reinhardt, W.P., Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, J. Chem. Phys, 47 (1967) 130.
- [22] Clementi, E., Roetti, C., At. Data & Nucl. Data Tables, 14 (1967) 177.
- [23] Geller, M., Two-Center Integrals over Solid Spherical Harmonics, J. Chem. Phys., 39 (1963) 84.
- [24] Zschornack, G., Handbook of X-Ray Data, Springer, Berlin, 2007.

EKLER

Ek.1. Küresel Kordinatlar

Küresel koordinat sistemi Şekil 13'de gösterildiği gibi r, θ, φ değişkenleri ile tanımlanır. Koordinatların tanımlı oldukları aralıklar ve tanımları şu şekilde verilir [19].

r: Yarıçap, P noktası ile (0,0,0) noktaları arasındaki uzaklık.

Tanım aralığı $0 \le r < \infty$ aralığında tanımlıdır.

- **\theta:** z ekseni ile çap arasındaki açıdır. Tanım aralığı $0 \le \theta < 180$ aralığında tanımlıdır.
- φ : x ekseni ile çapın xy düzlemine izdüşümüdür. Tanım aralığı $0 \le \varphi < 360$ aralığında tanımlıdır.

Şekil 13. Küresel Kordinat Sistemi

Küresel kordinatlar, Kartezyen kordinatlar cinsinden yazılırsa;

$$r = (x^2 + y^2 + z^2)^{1/2}$$
(65)

$$\theta = \arccos \frac{z}{(x^2 + y^2 + z^2)^{1/2}}$$
(66)

$$\varphi = \arctan \frac{y}{x} \tag{67}$$

eşitlikleri elde edilir. Kartezyen kordinatlar küresel kordinatlar cinsinden yazılırsa;

 $x = r\sin\theta\cos\varphi \tag{68}$

$$y = r\sin\theta\sin\varphi \tag{69}$$

$$z = r\cos\theta \tag{70}$$

şeklinde verilir.

Ek.2. Legendre Polinomları

Legendre diferansiyel denklemi pek çok matematik ve fiziksel problemde karşımıza çıkar. Elektrostatik potansiyel, kuantum mekaniğinde küresel harmonikler, Laplece ve Helmoltz denklemleri denklemleri bunlara örnektir [19]. Schrödinger dalga denkleminin küresel koordinatlarda değişkenlere ayırma yöntemi ile çözümünden elde edilen Legendre diferansiyel denklemi aşağıdaki gibidir.

$$(1-x)^2 \frac{d^2 P(x)}{dx^2} - 2x \frac{dP(x)}{dx} + \left(l(l+1) - \frac{m^2}{1-x^2}\right)P(x) = 0$$
(71)

 $m \neq 0$ için bağlı (assosiye) Legendre diferansiyel denklemi, m = 0 için ise Legendre diferansiyel denklemi denir [19]. Bu diferansiyel denklemi m = 0 için çözdüğümüzde ve [-1,1] aralığında tanımlı $P_l(x)$ şeklinde Legendre polinomları olur. Legendre polinomları için Rodriques formulü;

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$
(72)

şeklinde verilir. Denklem 72'de $(x^2 - 1)^l$ binom açılımı kullanılırsa ve l kez türev alınırsa,

$$P_{l}(x) = \sum_{n=0}^{\lfloor l/2 \rfloor} \frac{(-1)^{n}}{2^{l}} \frac{(2l-2n)!}{n! (1-n)! (1-2n)!} x^{l-2n}$$
(73)

elde edilir. Legendre polinomlarının ilk 6 değeri Tablo 54.'de ve bu fonksiyonların davranışları Şekil 14.' de verilmiştir.

Tablo 54.	Legendre	polinom	larının ill	c altı	değeri
	0	1			0

$P_0(x) = 1$	$P_3(x) = \frac{1}{2}(5x^3 - 3x)$
$P_1(x) = x$	$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$
$P_2(x) = \frac{1}{2}(3x^2 - 1)$	$P_5(x) = \frac{1}{8}(63x^5 - 70x^3 + 15x)$

Şekil 14. Bazı Legendre Polinomları

Ek.2.1. Assosiye (Bağlı) Legendre Fonksiyonları

(71) denklemini $m \neq 0$ için çözüldüğünde elde edilen sonuç;

$$P_{lm}(x) = (1 - x^2)^{|m|/2} \left(\frac{d}{dx}\right)^{|m|} P_l(x)$$
(74)

şeklinde olur. $P_{lm}(x)$ assosiye Legendre fonksiyonu, $P_l(x)$ *l*-inci mertebeden Legendre polinomudur. Burada m = -1, ..., 0, ..., 1 aralığında tanımlıdır. Tablo 55'de $P_{lm}(\cos \theta)$ 'nın birkaç değeri verilmektedir.

$P_{00} = 1$	$P_{20} = \frac{1}{2}(3\cos^2\theta - 1)$
$P_{11} = \sin \theta$	$P_{33} = 15\sin\theta \left(1 - \cos^2\theta\right)$
$P_{10} = \cos \theta$	$P_{32} = 15 \sin^2\theta \cos^2\theta$
$P_{22} = 3 \sin^2 \theta$	$P_{31} = \frac{3}{2}\sin\theta(5\cos^2\theta - 1)$
$P_{21} = 3 \sin\theta \cos\theta$	$P_{30} = \frac{1}{2}(5\cos^3\theta - 3\cos\theta)$

Tablo 55. $P_{lm}(\cos \theta)$ Legendre fonksiyonunun ilk altı değeri

Ek.3. Küresel Harmonikler

Zamandan bağımsız Schrödinger denklemi;

$$-\frac{\hbar^2}{2m}\vec{\nabla}^2\psi(x,y,z) + V\psi(x,y,z) = E\psi(x,y,z)$$
(75)

verilir. Denklem.75 değişkenlere ayırma yöntemi uygulanırsa, küresel koordinatlar cinsinden, dalga fonksiyonu;

$$\nabla^2 \psi(r,\theta,\phi) = f(r) Y_{lm}(\theta,\phi) \tag{76}$$

şeklinde elde edilir. Burada f(r) radyal dalga fonksiyonudur. Tüm atom ve moleküller için $Y_{lm}(\theta, \phi)$ ifadesine küresel harmonikler denir.

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{lm}(\cos\theta) e^{im\phi}$$
(77)

Burada $P_{lm}(\cos \theta)$ ifadesi Legendre polinomudur. *l* ve *m*'nin bazı değerleri Tablo 56'da verilmiştir.

l	m	$Y_{lm}(\theta, \phi)$
0	0	$\frac{1}{2}\frac{1}{\sqrt{\pi}}$
1	-1	$\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \ e^{-i\phi}$
	0	$\frac{1}{2}\sqrt{\frac{3}{\pi}\cos\theta}$
	1	$-\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta \ e^{i\phi}$
2	-2	$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \ e^{-2i\phi}$
	-1	$\frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta\cos\thetae^{-i\phi}$
	0	$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta-1)$
	+1	$\frac{1}{2}\sqrt{\frac{15}{2\pi}}\sin\theta\cos\thetae^{i\phi}$
	+2	$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\sin^2\theta \ e^{2i\phi}$

Tablo 56. Küresel harmoniklerin l ve m değerlerine göre incelenmesi.

ÖZGEÇMİŞ

1977 yılında Aksaray'da doğdu. İlk ve ortaöğrenimini Aksaray'da tamamladı. 1998 yılında Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Fizik Bölümü'nden mezun oldu. İki yıl özel dershanelerde çalıştıktan sonra, 2001 yılında Sivas, Kangal, Avşarören Köyünde öğretmenliğe başladı. 2010 yılında Rize Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü'nde yüksek lisansa başladı. Halen Rize Güneysu Yavuz Selim Lisesinde müdür yardımcısı olarak çalışmaktadır.