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Abstract
The dynamic hysteresis features inmixed spins- / / /( )1 2, 3 2, 5 2 ternary alloy systemwith formula

( )AB Cp p1- was examined throughGlauber-type stochastic dynamic andmean-field theory. The

system includes two interpenetrating lattices, one has spin- /1 2 components, while the other includes
a randomdistribution of spin- /3 2 and spin- /5 2 compounds. The effect ofHamiltonian parameters
on the dynamic hysteresis behavior was investigated in detail and observed that the physical
characteristics have a significant impact on the shape and quantity of hysteresis loops.We compared
ourfindings with other theoretical and experimental investigations; a high level of agreement is
obtained.

1. Introduction

Molecule-basedmagnets display striking characteristics, namely invertedmagnetic hysteresis loop,multi-
compensation behavior, and photo-inducedmagnetization. Including spintronics, information quantum
computing,molecular electronics, and storage,molecule-basedmagnets have shown promise for a variety of
uses [1–5]. Prussian BlueAnalogs (PBA)which is a type ofmolecularmagnet, has beenwidely explored in the
previous decade due to the ability to adjust their compositional concentration during synthesis and the effect
that thismanipulation has on the system’smagnetic features. PBA has been theoreticallymodeled as ternary
metallic alloys having the formula ( )AB C .p p1- As far as spin sizes are concerned, the equilibrium features of the
mixed-spin ternary alloy systembuilt of a great variety of combinations of the spinmagnitudes have been
investigated usingGreen’s functions, Bethe approximation,Monte Carlo simulations, effective field theory,
meanfield theory, among others (see [6–11] and therein).

Despite the extensive literature on equilibriummagnetic properties of the systems, to our best knowledge,
there are only several studies on the ternary alloy system’s dynamic characteristics [12–17]. Overall, magnetic
ternary alloy dynamic phenomena are complicated and diverse, and understanding them is essential for
designing and refining thesematerials for a variety of technological applications, such asmagnetic storage,
sensing, and energy conversion. To fully understand the complexmagnetic behavior of ternary alloys and
discover their potential for cutting-edge and new applications,more theoretical investigation and
experimentation are required.When amagnetically interacting, system is driven by a time-dependentmagnetic
field varying sinusoidally, the systemmay not respond to the external field simultaneously. Owing to the
existence of a competition between the system’s relaxation behavior and the period of the driving field, one
important striking phenomenonwhich has important technological applications and intriguing physics occurs,
dynamic hysteresis behavior, namely the hysteretic response of the kinetic Ising system to the periodically
oscillatingmagneticfields. Scientists are currently focused on the nonequilibrium systembehavior. The dynamic
phase lag between the instantaneousmagnetization and the periodic externalmagnetic field is connected to the
hysteresis phenomena. In contrast to the results observed in equilibrium systems inwhich themagnitude of the
externalfield does not explicitly changewith time, dynamic hysteresis in a non-equilibrium system is observed
in the paramagnetic phase. In otherwords, a ferromagneticmaterial has nonzero coercivity in the presence of
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staticmagnetic fields. In the proximity of the ferromagnetic paramagnetic phase transition zone, this coercive
field drops to zerowith the use of theHamiltonian parameter as an adjustable parameter, such as raising the
temperature, frequency, crystalfield, etc. The relaxation time of the system at high oscillation frequencies of the
externalfield is relativelymuch larger than the oscillation period of the external perturbation. As a result of the
system’s inability to follow the driving field, dynamic symmetry is lost, resulting in asymmetric hysteresis curves.
Becausemagnetization never reaches zero, coercivity is irrelevant in this case. The system approaches the
dynamic paramagnetic phase as thefield frequency decreases or the external field’s amplitude rises, and
symmetric hysteresis loopswith nonzero coercivity are seen [18–22]. Themost well-known kinetic Ising-type
hysteresis curve takes the shape of a Lissajous curve and is caused by the fluctuation of time-dependent
magnetization ( )m t with an externalfield ( )h t .This widespread phenomenon has gotten a lot of attention
because of its vast range of potential applications. Dynamic hysteresis behaviors can be observed experimentally
in variousmaterials and systems, such as / / ( )NiFe Cu Co 001 spin-valve structures, epitaxial single
ferromagnetic ( )fcc NiFe 001 , permalloy thin films,magnetic /[ ]Co Pt 3 multilayers, the ternary intermetallic
compound, Pb Sr TiO0.4 0.6 3 ferroelectrics film, single crystalline compound ( )Co TeO Br ,7 3 4 6 etc [23–27].
Moreover, theoretically, dynamic hysteresis behaviors have been exploredmostly using threemodels: (i)The
time-dependent Landau–Lifshitz-Gilbert equations (ii)Extended domainwallmodels (iii) Ising kind systems
such as one ormixed spin systems (see [28–35] references therein).

In conclusion, thismanuscript presents a comprehensive study of the dynamicmagnetic hysteresis
properties of ternary alloys, highlighting the effect ofHamiltonian parameters. To achieve this goal, an

( )AB Cp p1- ternary alloy system consisting of spins /S 1 2,i
A = /S 3 2,j

B = and /S 5 2j
C = was simulated using a

Glauber-type stochastic dynamic using themean-field approximation. On the other hand, three characteristics
can determine the dynamic hysteresis loops’ shape; namely dynamic hysteresis loop area, coercivity field, and
remanentmagnetization. Inmagnetic recordingmedia, these characteristics are crucial [36]. Real tests of the
quality ofmagnetic recordingmedium and their connection to hysteresis-based approaches can be found in
[37]. Therefore, the understanding of the dynamicmagnetic hysteresis properties of ternary alloys is crucial for
their utilization in various technological applications, and this work aims to provide valuable insights and
directions for further research in thisfield.

Eventually, for these purposes, the paper’s outline is as follows: In section 2we introduce themodel and
formulations. The numerical results and discussion are presented in section 3. Finally, section 4 presents a
summary of our conclusions.

2.Model and formulation

Wecan describe a ferro–ferrimagnetic Ising ternary alloy’ spinHamiltonian as follows:

( )J S S J S S 1AB
ij

i
A

j
B

j AC ij i
A

j
C

jå åe e= - - -
á ñ

H

( ) ( ) ( )D S D S 1
j

j
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j
j

j
C

j
2 2å åe e- - -
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C
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A time-dependent oscillatingmagnetic field is identified as ( ) ( )H t H tcos0 w= that t , ,w and H0 are the time,
angular frequency, and amplitude. The D is the crystal field. J 0AB > and JAC are the exchange interaction
parameters between the nearest-neighbormagnetic particles. je is a distributed randomvariable with a value of
one or zero depending onwhether site j is occupied by an ion of B or C and it can be described as

( ) ( ) ( ) ( )P p p1 1 .j j je d e d e= - + - While the p is the concentration of B ion, ( )p1 - is the concentration of
C ion. The evolves according to theGlauber-type stochastic process at a rate of 1/τ. Glauber-type stochastic
dynamics is applied to obtain the system’s dynamical equations. If the Si

A—and Sj
B – spins remain constant

for amoment, themaster equation for Sj
C- spins are stated as
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( )W S Sj
C

j
C ¢ is the probability per unit of time that the j th spin changes from a value Sj

C to S .j
C¢ With the

probability per unit of time, each spin can change from the value Sj
C to S ,j

C¢

( )
( )( )
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kB is the Boltzmann factor.TA is described as absolute temperature and isSj
Cå ¢ the sumof thefive possible values

of Sj
C¢= ,5

2
 ,5

2
 .1

2
 When equations (1)–(3) are combinedwith themean-field theory, the dynamic equation

for Sj
C-spins are shown to be as follows.
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Where ( ) ( )( )x J z m p H p1 cos 1 ,AC AC A 0 x= - + - wt ,x = S m ,j
C

Cº w,tW = z 3.AC = Similarly, dynamic

equations for Sj
B- and Si

A- spins are shown to be as follows.
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B

B i
A

A AB AC BA CAº º = = = = The physical parameters have been scaled by

J 1.0.AB = Physical quantities are defined asT ,k T

J
B A
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= d D

JAB
= and h ,H

J0
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0= throughout the paper, respectively.

The dynamic order parameters,

( ) ( )M m d
1

2
5i i

0

2

òp
x x=

p

where i A B, ,= and C.Wecan define the dynamic hysteresis loop area as follows,

∮ ∮( ) ( ) ( ) ( )A m t dh h m t t dtcos , 60w w= = -

Solution and discussion of the equationswill be given in the next section.

3.Numerical results and discussion

The equations (4)–(6) are solvedwith numericalmethods such as Adams-Moulton-predictor-corrector with the
Romberg integration and illustrated infigures 1–9. It is worth emphasizing that because of the domains present
in ferromagneticmaterials, the variation M versus h is non-linear. A full discussion of the formation of the
hysteresis loop (HL) and the properties of domainsmay be found in, e.g. [38]. The formof theHL can be
governed by three properties: HL area, CF, and RM.TheHL area, also known as hysteresis loss ormagnetic
energy loss, is ameasure of the energy loss per unit volume of thematerial. Designing effectivemagnetic devices,
such as transformers, inductors, and electricmotors, requires an understanding of theHL area. Byminimizing
energywaste, lowering hysteresis loss increases these devices’ efficiency. To obtain smaller hysteresis loop
regions andmore energy-efficient systems, engineers and scientists evaluate and improvematerials. The CF ’
physical significance lies in its connection to the stability ofmagnetization in amaterial.Materials with a higher
coercive field aremore resistant to demagnetization,meaning they can retain theirmagnetization even in the
presence of strong externalmagnetic fields. This property is crucial for applications that require stable and long-
lastingmagnets, such as electricmotors,magnetic sensors and in hard disk drives. The physical relevance of RM
is seen in its link to amaterial’smagnetic characteristics. Higher remanentmagnetizationmaterials can retain a
considerablemagnetic field after the externalfield is withdrawn, showing a strong ‘memory’ of their
magnetization state. This feature is significant in permanentmagnets andmagnetic storage systems because it
enables the development of long-termmagnetic fields or the storing of data. The anisotropy ofmagnetism is
primarily responsible for the varied shapes observed in the hysteresis loop for ferromagneticmaterials. The
shape depends also on the different physical conditions, e.g.,T J p, , , .AC w

3
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The dynamicHL area is calculated for varying JAC from−2.0 to 1.5 and seen infigures 1(a)–1(c). This figure
shows that the dynamicHL area increases up to a certain value of JAC and then decreases. TheHL illustrates
symmetrical behavior for−0.53 JAC <1.20. The triple hysteresis behavior is observed in theHLof the system

Figure 1.The dynamicmagnetic hysteresis loops of the systemwith varying JAC from−2.0 to 1.5 at T 1.0,= d 1.0,= h 1.0,0 =
0.06 ,w p= and p 0.5= (a) MA (b) MB and (c) M .C

4
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at J0.64 1.00AC< < values. The dynamic order parameter, namely dynamicmagnetization (M ), coercivities
field (CF), and remanentmagnetization (RM)’ temperature-dependent behaviors are shown infigure 2(a)-(c),
respectively. Figure 2(a) is observed that the systemundergoes the first-order phase transitions from the
ferrimagnetic phase to the paramagnetic phase at JAC =−0.53 and JAC = 1.20. It is seen from figure 1 andfigure
2(a) that the system shows symmetrical behavior in the paramagnetic phase and asymmetrical in the
ferrimagnetic phase. Figure 2(b) illustrates that hCA and hCB coercivities fieldsfirst decrease with the increase in

J ,AC then increase, and continue theirmovement in this way and finish by increasing last. On the other hand, hCC

Figure 2.Magnetizations, Coercive field, andRemanentmagnetizations versus JAC with same parameter in figure 1.

5
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coercivityfieldfirst increases with the increase in J ,AC then decrease and finishes by increasing last. TheRM in
figure 2(c) shows similar behavior to theCF infigure 2(b). The hysteresis region in the J TAC - plane for
p 0.75, 0.5= and 0.25 plotted are infigures 3(a)–(c), for d 1.0,= h 1.0,0 = 0.06 .w p= It is seen that the triple
hysteresis region is wider at p 0.75= and narrows as p decreases. For p 0.5,= triple hysteresis is not observed
at J 0.5AC < - values.We examine the crystal-field interactions’ effect on theHL for a large selection of d,
namely−3.0 d 3.0 infigure 4 and the system shows the ellipticalHL shape for high negative values of d.To
understand the physicalmechanism behind the effect of the d onhysteresis loop quantities, we need to consider

Figure 3.The hysteresis region in ( )J TAC - plane for p 0.75,= 0.5 and 0.25.

6
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the interaction between the crystal field and themagneticmoments of thematerial. The asymmetry of the charge
distribution surrounding eachmagnetic ion is what causes this interaction to occur. The energy barrier that
must be crossed for themagneticmoments to change direction can be affected by the crystalfield, which in turn

Figure 4.The dynamicmagnetic hysteresis loops of systemwith varying d from−3.0 to 3.0 at T 1.0,= J 1.0,AC = h 1.0,0 =
0.06 ,w p= and p 0.5= (a) MA (b) MB and (c) M .C

7
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can impact the coercive field. By altering the stability of themagnetic domainswithin the substance, the crystal
field can have an impact on the remanentmagnetization. A crystalfield’s influence on certainmagnetization
directions can determine themagneticmoments’ preferred orientation. As a result, even in the absence of an
externalmagnetic field, thematerialmaymaintain a higher remanentmagnetization.With increasing d, the
type ofHL changes from single to triple loops. Single hysteresis usually refers to a straightforward lagging effect,
where the system’s current state is only dependent on its recent history. This phenomenon is frequently seen in

Figure 5.Magnetizations, Coercive field, andRemanentmagnetizations versus d with same parameter infigure 4.

8
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memory-rich systems, including ferromagneticmaterials or certainmechanical systems. In contrast, triple
hysteresis behavior shows amore sophisticated trailing effect, where the system’s reaction is influenced by both
recent and distant history in addition to its immediate past. Systemswith large nonlinearities or long-term

Figure 6.The dynamicmagnetic hysteresis loops of the systemwith varying T from 0.2 to 5.0 at J 1.0,AC = d 1.0,= h 1.0,0 =
0.06 ,w p= and p 0.5= (a) MA (b) MB and (c) M .C

9
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memory frequently exhibit this behavior. HL takes the shape of a Lissajous curve for high positive values of d.
These results are in a good agreementwith theoretical results [38–40].We calculate also crystal field-dependent
behaviors of dynamic M,CF, andRM and present infigures 5(a)–(c). Figure 5(a) illustrates systemdoes not give
any phase transition and is in a paramagnetic phase. Therefore, HL is symmetrical and this fact is clearly shown
infigure 4. The triple hysteresis behavior is observed in theHLof the system at d0.4 1.5.- < < Infigures 5(b)
and (c), by increasing the crystalfield value, bothCF andRMfirst decrease smoothly and then increase smoothly
again. Figure 6 shows the temperature-dependent behavior ofHL.We can see that from thisfigure, there is no

Figure 7.Magnetizations, Coercive field, andRemanentmagnetizations versus T with same parameter infigure 7.
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HL in the system for very small temperatures, namely 0.2. By increasing the temperature, one single narrowHL
appears and then it evolves into a symmetrical rectangular shape atT= 0.76. If the temperature value is further
increased, theHLbegins to take on a thin symmetrical form and is seen as tripleHL in this system. After T 1.5,
the system evolves into a symmetrical ellipsis. Additionally, ourfindings quantitatively compatible with a
number of theoretical findings [39, 40] as well as experimental observations on ultrathin epitaxial Fe/GaAs and
Fe/InAs(001) [41], Fe thinfilms [42], Cofilms onCu (001) [43]. Infigure 7, the dynamic M, CF, and RM are
calculatedwith the same parameters as those used infigure 6. Figure 7(a) shows thefirst-order phase transitions

Figure 8.The dynamicmagnetic hysteresis loops of the systemwith varying p from0.0 to 1.0 at T 1.0,= J 1.0,AC = d 1.0,=
h 1.0,0 = and 0.06w p= (a) MA (b) MB and (c) M .C
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from the ferrimagnetic phase to paramagnetic phase atT = 0.76. Fromfigures 7(b) and (c)we observe that both
CF andRMfirst decrease smoothly and then increase smoothly. The concentration ratio p dependence of the
HL is investigated and the results obtained are presented infigure 8. There is noHL in the system for

Figure 9.The dynamicmagnetic hysteresis loops of the systemwith varying w from 0.05p to 2.0p at T 1.0,= J 1.0,AC = d 1.0,=
h 1.0,0 = and p 0.5= (a) MA (b) MB and (c) M .C
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p0 0.28.< < While theHL ofB sublattice displays triple behavior at p= 0.5, theHLofA andC sublattices take
the shape of a Lissajous curve. BothB andC sublattices display tripleHL for p= 0.75whileA sublattice shows
oneHL.When there is noHLof theC sublattice for p= 1.0,A andB sublattices showLissajous curve. Finally, we
present the effect of w onHL infigure 9 for different values of ,w ranging from 0.05p to 2.0 .p The system shows
wideHL for a very low value .w Moreover, the systemdoes not illustrateHL for frequency values greater than
0.25 .p Weobserved similar results in some theoretical studies [44, 45] and some experimental results, namely
[46, 47].

4. Summary and conclusion

In summary, themean-field approximation andGlauber-type stochastic dynamics have been used to study the
dynamic hysteresis characteristics ofmixed spins- / / /( )1 2, 3 2, 5 2 ternary alloy systemwith formula

( )AB C .p p1- TheHLbehaviors are examined for different interlayer coupling, crystal-field interactions,
temperatures, concentration constants, and frequencies. TheHL illustrates symmetrical behavior for−0.53
JAC<1.20. For large negative values of d, the system exhibits the ellipticalHL shape. As d increases, the number
ofHL increases from single to triple loops. For very low temperatures, there is noHL in the system. After
T 1.5, the system evolves into a symmetrical ellipsis. There is noHL in the system for low p, namely

p0 0.28.< < The systemdisplays wideHL for a very low w value.We also investigate the variation of the
coercive field and remanentmagnetizationwith the reduced temperature and the interlayer coupling constant.
We observe that our results are in good agreement with some theoretical and experimental results. Our findings
demonstrate that theHamiltonian parameters have a delicate influence on the dynamic hysteresis properties’
form and quantity.

Finally, we expect that our thorough theoretical explorationwill inspire other efforts to empirically
investigate the dynamic hysteresis behavior on ternary alloy Ising systems and shed some light on such efforts.
We also expect that by employingmore precisemethods like kineticMonte Carlo simulations or
renormalization-group calculations, theoretical physicists would be inspired to continue their research into the
dynamic hysteresis behavior.

Data availability statement

The data cannot bemade publicly available upon publication because no suitable repository exists for hosting
data in thisfield of study. The data that support thefindings of this study are available upon reasonable request
from the authors.
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