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We investigated theoretically the influence of the transport current and

applied magnetic field on the magnetostriction of type-II superconductors.

In order to study the magnetostrictive response of a superconducting slab

specimen, three cases of magnetic history of the sample are considered in

the present work: (1) the transport current applied after zero-field-cooling,

(2) the current and field are applied simultaneously, (3) the current is ap-

plied at the remenent critical state. In the proposed model, the exponential

critical state model and the Bean model is employed to compute the flux

profile within the slab subjected to sufficiently small transport current and

applied magnetic field. Simple expressions for the internal stress and the

magnetostriction in terms of this magnetic profile are derived. The mag-

netostriction curves versus the transport current and applied field are pre-

sented.

PACS numbers: 74.25.Ha, 74.25.Ld

1. Introduction

In a great deal of technological applications such as ac magnets, power trans-
mission cables, transformers, the superconductors are subjected to the transport
current pulses. Dul’kin [1] reported that the value of magnetostriction ∆W/W of
superconducting YBa2Cu3O7−δ subjected to transport current pulse is of 10−4,
which implies that it is necessary to investigate possible magnetostriction owing
to the transport current. The influence of transport current on magnetization of
superconductors was studied by LeBlanc [2]. The hysteresis losses due to the trans-
port current flowing through a thin superconducting stripe were first calculated
by Norris [3]. The critical-state behavior for an arbitrary sequence of applied
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transport current was theoretically analyzed by Zeldov et al. [4] for supercon-
ducting slab and strip geometries and by Brandt and Indenbom [5] for only strip
geometry. The magnetic properties of type II superconductors carrying transport
current such as current density, magnetic field, penetrated magnetic flux, mag-
netic moment, dynamic resistance, AC losses etc. were extensively investigated by
others [2–10]. To our knowledge, the pinning induced magnetostriction of a super-
conductor exposed to transport current has not been studied in the critical-state
framework up to date.

When a superconductor is placed into a magnetic field, a noticeable defor-
mation of superconductor occurs in the critical state because of the magnetic force
density f = Jc×B, where the current density and B is the magnetic field. As ver-
ified by a great number of papers [11–24], this results in an anomalous irreversible
magnetostriction and shape distortion in type-II superconductors with strong pin-
ning. The objective of this work is to provide a model to calculate the internal
stress and magnetostriction that occurs when a current is transported through
a superconductor in absence and presence of the external field in slab geometry
within the critical state model. We employ the exponential model which mostly
gives a better description of magnetostriction in type II superconductors [11–15].

2. The magnetostriction of a superconducting slab subjected to a
transport current

In this work, we calculate the magnetostriction hysteresis loops of an in-
finitely long type-II superconducting slab of thickness 2W as shown in Fig. 1. We
assume the thickness of the slab to be much larger than the London penetration
depth λ and much smaller than its other two dimensions. The influence of the
lower critical field Hc1 and surface effects are neglected in the present treatment.
The exponential model for the field dependence of critical current is given by [25,
26]

Jc(H) = Jc0e−|H|/H0 , (1)
where is the critical current density at zero field and is the field at which Jc reduces
to its 1/e factor. Both are characteristic properties of the material. The Ampère
law for the magnetic profile within the slab reads

∂H(x)
∂x

= ±Jc(H), 0 ≤ x ≤ 2W, (2)

where − (+) stands for field increasing (decreasing) process.
We now analyze the response of the specimen to an applied transport current

in the positive y direction. To find the magnetic field outside of slab generated by
uniform transport current IT, let us consider a rectangular Amperian loop in the
xz plane, divided by the sample plane. Applying Ampère’s law, we find∮

H · dl = 2Hl = Ienc = ITl, (3)

where l is the length of the sides in the rectangle with non-zero contribution to
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Fig. 1. A superconductor slab with width 2W carrying a transport current IT in the

y direction. Hind represents the magnetic field induced by the transport current.

the path integral. Therefore H = ±IT/2 or more precisely,

H(x) =

{
−(IT/2)ẑ for x ≤ 0,

(IT/2)ẑ for x ≥ 2W.
(4)

Substituting Eq. (1) into Eq. (2) and subjecting to boundary conditions in Eq. (4)
IT/2 at x = 2W and −IT/2 at x = and also consider the following boundary
condition:

∂H(x = 0)
∂x

=
∂H(x = 2w)

∂x
= Jc(IT/2), (5)

we obtain∫ −H−(x)

IT/2

e|H|/H0dH = −
∫ x

0

Jc0dx (6)

and ∫ IT/2

H+(x)

e|H|/H0dH =
∫ 2W

x

Jc0dx, (7)

where H−(x) is the field inside the left side of the slab (i.e., 0 ≤ x < W−, see Fig.
2) and H+(x), the field inside the right side (i.e., W+ < x ≤ 2W , see Fig. 2). Such
a transport current IT (per unit length in the z-direction) results in a negative
flux distribution on the left side of the slab, and a positive flux on the right but
in the field free region J = 0, where the flux does not penetrate, the field is zero.
The flux profile in terms of the transport current outside and inside the specimen
can be written as

h(x′) =





i, x′ ≥ 2,
1
p ln

(
e|i|p − p(2− x′)

)
, w+ < x′ < 2,

0, w− ≤ x′ ≤ w+,

− 1
p ln

(
e|i|p − px′

)
, 0 < x′ < w−,

−i, x′ ≤ 0,

(8)

with i > 0, where w+ and w− correspond to the flux front positions on the right
and on the left of the specimen, respectively, and are found to be
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Fig. 2. The calculated magnetic flux density profile inside superconducting slab em-

ploying Eq. (8). The transport current IT is applied after the zero-field cooled process.

All values are in the normalized form and ic is defined by Eq. (14). The profile is p = 1.

w− =
1
p

(
e|i|p − 1

)
,

w+ =
1
p

(
1 + 2p− e|i|p

)
. (9)

Here, the non-dimensional quantities employed are defined by h(x′) ≡ H(x)/Jc0W ,
ha ≡ Ha/Jc0W , i ≡ IT/Ic, Ic = 2Jc0W , p ≡ J|mrc0W/H0, and x′ ≡ x/W . where
p is also called the pinning parameter determining the field dependence of critical
current, defined by Chen et al. [26].

From classical electrodynamics, the force driving the vortices into the mate-
rial is given by µ0J ×H. In the critical state, equating J to Jc and making use
of Eq. (2), the x component of the force exerted on the material per unit volume
has been calculated as

F =
µ0

2
∂H2

∂x
. (10)

The x component of an internal stress distribution can be obtained by taking the
path integral of F along the thickness of the specimen: σ(x) =

∫
Fdx. Finally, we

found the stress distribution due to the transport current to be

σi(x′) =
µ0

2
[
H(x′)2 − (IT/2)2

]
=

µ0J
2
c0W

2

2
[h2(x′)− i2]
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Fig. 3. The simulated magnetic flux distribution inside superconducting slab for various

p parameters. The amounts of applied current for each p are ic/4, ic/2, ic.

=
µ0J

2
c0

2





1
p2

[
ln(e−|i|p − p(2− x′))

]2 − i2, w+ ≤ x′ ≤ 2,

−i2, w− ≤ x′ ≤ w+,
1
p2

[
ln(e|i|p − px′)

]2 − i2, 0 ≤ x′ ≤ w−,

(11)

then, magnetostriction reads

∆W

W
=

1
2W

∫ 2W

0

σ(x)
c0

dx =
µ0J

2
c0W

2

4c0

∫ 2

0

[h2(x)− i2]dx, (12)

where c0 is the stiffness constant. In the limit of p → 0 (Jc0W ¿ H0) the expres-
sion yields the Bean result [26–28]:

lim
p→0

∆W

W
= −µ0J

2
c0W

2

2c0
i2 ==

µ0I
2
T

8c0
. (13)

Figure 2 shows the flux-density profiles for the current increasing from zero
to ic.

As the current is ascended, the flux front position at left side defined by
W− slides toward the center of the slab and also, that of the right defined by W+

towards center of the slab. The maximum value of ic is determined by equalizing
these flux front positions w− and w+. Thus,

ic = (1/p) ln(1 + p). (14)
Let us note that ic is the value at which transport current penetrates the whole
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Fig. 4. The calculated current distribution inside slab as the transport current i =

IT/Ic is ascended for the specimen initially in the virgin state. The critical current Ic

and total transported current I can be calculated by Eq. (14) and I =
∫ 2D

0
J(x)dx,

respectively, p = 1.

slab volume. Ic goes to unity in Bean’s limit p → 0. As long as the applied current
flowing within about λ of each surface is sufficiently small (λ ¿ 2W ), so as the slab
is in the Meissner state, the magnetic self-field does not penetrate the slab volume,
h(x) = 0 except for λ < x < 2W − λ. When the self-field at the surfaces exceeds
the lower critical field Hcl, positive flux penetrates the specimen from the right
and negative flux infiltrates the left side. It can be deduced from Fig. 3 that the
flux distribution inside specimen is strongly dependent on the strength of the field
dependence of the critical current. Comparing the profiles of the magnetic field
with respect to pinning strength p, we see that the field profile is linear for the weak
pinning (p = 0.01), whereas for the strong pinning the field profile becomes more
round. The larger p, the more quickly magnetic flux penetrates into the specimen.
As a result one observes, with increasing p, a decrease in the critical current ic
(given by Eq. (14)). Figure 4 shows the current distribution corresponding to the
flux distribution in Fig. 2. The amount of the current transported in the left side
and right side of the superconducting slab is equal and at the same direction. The
width of the flux-free domain in the slab w+ − w− depends on both the pinning
parameter p and transport current i. The width drops exponentially with the
applied current and therefore displays nonlinear behavior.
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Fig. 5. Calculated magnetostriction curves as a function of the increasing transport

current for various pinning parameters p. The dilation ∆W/W and the transport current

IT are normalized by W0 = µ0J
2
c0W

2/(4c0) and Ic = 2Jc0W , respectively. Maximum

transport current value for each p is determined by Eq. (14).

As explained in Ref. [12], according to the exponential model, the parameters
that suffice to properly describe the magnetostrictive response of the superconduc-
tors in the critical state are Hmax and p. Here, Hmax corresponds to the maximum
self-field created by the critical current given by Eq. (14). Figure 5 depicts the
magnetostriction curves for various pinning parameters p calculated employing Eq.
(12). ∆W/W is normalized by W0 = µ0J

2
c0W

2/(4c0). The qualitative features of
the curves are not chanced by the normalization since the normalization coefficients
affect only the pre-factor in Eq. (12) and thus, it only alters the scale of ∆W/W .
As seen in Fig. 5, magnetostriction ∆W/(WW0) decreases as IT increases. This
negative magnetostriction of the specimen is owing to the forces exerted by both
the positive and negative vortices penetrating the sample. Both shape and scale
of the curves strictly depend on the parameter p. The behavior of ∆W/(WW0)
curves does not depend on p at lower current values but starts to vary with p high
currents. The local minimum appearing for large p is the characteristic of the
exponential model (see Refs. [12, 14]), in which the pinning force Fp = µ0J ×H

versus the self-field has a maximum as parameter p is increased.

3. The magnetostriction calculation of the superconducting slab,
subjected to a transport current and a magnetic field

Let us consider the magnetic field Ha = Haẑ and the current IT = ITŷ

applied simultaneously. Using the results in the previous section, a magnetic
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Fig. 6. Simulated flux density profile inside the superconducting slab according to the

exponential model (p = 1). The field and current are applied simultaneously but the

magnitude of applied field outside slab is larger than the magnitude of the self-field

induced by the transport current. The arrows indicate the progression of profiles.

field of ±IT/2 outside the slab in addition to Ha is induced due to the transport
current IT.

The resultant field outside of specimen is given by

H(x) =

{
(Ha − IT/2)ẑ, x ≤ 0,

(Ha + IT/2)ẑ, x ≥ 2W.
(15)

Inserting Eq. (1) into Eq. (2) and exploiting field values at the specimen
edges Ha + IT/2 at x = 0 and Ha − IT/2 at x = 2W given by Eq. (15) (Fig. 6),
the field inside the left side of slab H(x) is calculated using the following integrals:

∫ H−(x)

Ha− lT
2

e|H|/H0dH = −
∫ x

0

Jc0dx, (16)

and the field inside the right side of slab H(x).
∫ Ha+

lT
2

H+(x)

e|H|/H0dH =
∫ 2W

x

Jc0dx. (17)

The magnetic profile expression in the reduced form outside and inside the slab due
to the transport current and the applied magnetic field is given more compactly,
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h(x′) =





ha + i x′ ≥ 2,
1
p ln

(
e|ha+i|p − p(2− x′)

)
, w+ < x′ < 2,

0, w− ≤ x′ ≤ w+,
1
p ln

(
e|ha−i|p − px′

)
, 0 < x′ < w−,

ha − i, x′ ≤ 0,

(18)

with the flux fronts

w′− =
1
p
(1− e|ha−i|p), w′+ =

1
p
(1 + 2p− e|ha+i|p) (19)

on the left and on the right, respectively. The field distribution obtained in Eq.
(18) is shown in Fig. 6. Such field profile can be carried out assuming that
the magnitude of the applied field outside of specimen must be larger than the
magnitude of the self-field induced by the transport current, ha ≥ i. However,
the ascending rate of the applied field must be greater than that of the current,
dha/dt ≥ di/dt.

We calculated the stress distribution created by the magnetic profile given
in Eq. (18) as

σi,h(x′) =

=
µ0J

2
c0

2





1
p2

[
ln(e|ha+i|p − p(2− x′))

]2 − (ha + i)2, w′+ ≤ x′ ≤ 2,

−(ha + i)2, w′− ≤ x′ ≤ w′+,
1
p2

[
ln(e|ha−i|p − px′)

]2 − (ha + i)2, 0 ≤ x′ ≤ w′−.

(20)

The boundary values of the stress function σi,h(x = 2W ) = −µ0HaIT and σi,h(x =
0) = 0 imply an unbalanced force acting on the slab. The stress value at x = 2W is
nothing else but the path integral of the Lorentz force along the sample thickness.
This force makes the slap to move in the positive x direction and makes it suffer
from an inertial force in non-inertial frames of reference leaving the boundary free
of stress. The magnetostriction can be calculated inserting the stress expression
Eq. (20) into Eq. (12) except the additional term coming from the inertial force.
Taking the Bean limit p → 0, we have

∆W

W
=

µ0J
2
c0W

2

2c0

[
1
3
(ha − 3)h2

a − 6hai + (ha − 1)i2
]

. (21)

In absence of applied magnetic field, i.e. ha = 0 this expression transforms back
into Eq. (13).

4. The magnetostriction analysis of a superconductor
carrying transport current applied at remenent state

We have analyzed the field distribution produced when a transport current
is applied to a specimen in the remanent state. The remanent state is described as
the critical state that is created by initially subjecting the specimen to a very high
magnetic field, at least larger than twice the full penetration, and then decreasing
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Fig. 7. Evolution of magnetic flux profile calculated employing exponential model as

the transport current IT is ascended for a slab sample initially in the fully penetrated

remenent state. The solid curve shows the initial IT = 0 profile, and arrows imply the

progression of the subsequent profile as IT increased, p = 1.

the applied field to zero. A transport current is gradually applied in the y direction
after the remenent state. As seen in Fig. 7, this additional current alters the
magnetic field profile and hence the vortex distribution. The current causes a
flux penetration from the right side and a flux escapes from the left side of the
specimen. Flux profile equations described in this state are given by

h(x′) =





− 1
p ln(e|i|p + px′), 0 ≤ x′ ≤ w−,

1
p ln (1 + p(x′ − w−)) , w− ≤ x′ ≤ wi,
1
p ln (1 + p(2− x′)) , wi ≤ x′ ≤ w+,
1
p ln

(
e|i|p − p(2− x′)

)
, w+ ≤ x′ ≤ 2.

(22)

Continuity of h(x′) yields the following relations:

w+ =
1
2p

(
1 + 4p− e|i|p

)
, w− =

1
p

(
1− e|i|p

)
, wi = 1 +

1
2
w−. (23)

Figure 8 shows how ∆W/(WW0) depends on the transport current for different
values of parameter p. The figure was obtained by substituting Eq. (22) into Eq.
(12). Both ∆W/W and IT are again represented in the normalized form, as above.
Owing to the trapped flux lines trying to leave the specimen, the superconducting
slab in the remenent state is expanded compared to the original, zero-field cooled
length. The extension of the sample in this state is given by
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Fig. 8. Family of curves of magnetostriction versus different pinning parameter p, as

a current is transported after fully remenent state. Here W0 = µ0J
2
c0W

2/(4c0) and

Ic = 2Jc0W .
(

∆W

WW0

)

REM

=
2p + (1 + p) (−2 + ln(1 + p)) ln(1 + p)

p3
. (24)

When the transport current is ascended, one sees that the dilation ∆W/(WW0)
gradually decreases and the sample reaches the original length and then begins to
contract. The contraction for p = 10 is very small in comparison with p = 0.01
and 1. This arises from that the amount of the vortices that penetrate and exit
through edge of the sample is controlled by the pinning parameter p.

5. Conclusion

We have presented a general approach in the frame of the critical state
model to calculate the complex magnetostriction hysteresis of the superconduct-
ing sample subjected to a transport current with and without magnetic field. In
this modeling work, we have utilized an exponential type decay Jc = Jc0e−|H|/H0

of critical current density. The transport current can induce a negative mag-
netostriction. We note that investigation of transport current effect on type-II
superconductors’ magnetostriction can offer an alternative tool to study their flux
dynamic properties and also becomes important for technological aspect.
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[14] F. Inanir, S. Çelebi, J. Alloys Comp. 427, 1 (2007).
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