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Abstract
This article presents the outcomes of a research study focused on optimizing the performance of soybean biofuel blends derived 
from soybean seeds specifically for urban medium-duty commercial vehicles. The study took into consideration elements such as 
production capacity, economics and assumed engine characteristics. For the purpose of predicting performance, combustion and 
emission characteristics, an artificial intelligence approach that has been trained using experimental data is used. At full load, the brake 
thermal efficiency (BTE) dropped as engine speed increased for biofuel and diesel fuel mixes, but brake-specific fuel consumption 
(BSFC) increased. The BSFC increased by 11.9% when diesel compared to using biofuel with diesel blends. The mixes cut both 
maximum cylinder pressure and NO

x
 emissions. The biofuel-diesel fuel proved more successful, with maximum reduction of 9.8% 

and 22.2 at rpm, respectively. The biofuel and diesel blend significantly improved carbon dioxide ( CO
2
 ) and smoke emissions. The 

biofuel blends offer significant advantages by decreeing exhaust pollutants and enhancing engine performance.
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Highlights
• Soybean biofuel blends for sustainable urban medium-duty 

commercial vehicles.
• Optimization performance characteristics by AI-driven approach.
• Engine combustion emissions may be reduced with the use of 

biofuel.
• It was found that the reduction in  NOx emission with biofuel.

 * Erdem Cuce 
 erdem.cuce@erdogan.edu.tr

 Ümit Ağbulut 
 umit.agbulut@yildiz.edu.tr

1 Department of Mechanical Engineering, RGM College 
of Engineering and Technology, Nandyal 518501, India

2 Department of Mechanical Engineering, National Institute 
of Technology, Raipur 492010, India

3 Department of Mechanical Engineering, Maulana Azad 
National Institute of Technology, Vellore 462003, India

4 Department of Biological and Agricultural Engineering, 
Faculty of Engineering, Universiti Putra Malaysia, 
43400 UPM Serdang, Selangor, Malaysia

5 Department of Mechanical Engineering, Faculty 
of Mechanical Engineering, Yildiz Technical University, 
34349 Istanbul, Turkey

6 Department of Civil Engineering, Guru Ghasidas 
Vishwavidyalaya, Bilaspur, India

7 Department of Mechanical Engineering, College 
of Engineering, King Khalid University, Abha 61421, 
Saudi Arabia

8 School of Mechanical Engineering, Vellore Institute 
of Technology Vellore, 632014 Vellore, Tamil Nadu, India

9 Department of Mechanical Engineering, Faculty 
of Engineering and Architecture, Recep Tayyip Erdogan 
University, Zihni Derin Campus, 53100 Rize, Turkey

10 School of Engineering and the Built Environment, 
Birmingham City University, Birmingham B4 7XG, UK

11 Faculty of Science and Engineering, School of Computer 
Science, University of Hull, Cottingham Road, 
Hull HU6 7RX, UK

12 Center for Research Impact & Outcome, Chitkara University, 
140401 Rajpura, Punjab, India

Nomenclature
AI  Artificial intelligence
ANN  Artificial neural network
AET  Average exhaust gas temperature
B  Burette for fuel measurement
BSC  Brake specific fuel consumption
BSN  Bosch smoke number
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b TDC  Before top dead centre
BTE  Brake thermal efficiency
CI   Compression ignition engine
CMP  Cylinder maximum pressure
CMT  Cylinder maximum temperature
CO  Carbon monoxides
CO2  Carbon dioxide
CR  Compression ratio
D  Diesel fuel
D95S5  Diesel fuel 95% and S fuel 5%
D80S20  Diesel fuel 80% and S fuel 20%
D60D40  Diesel fuel 60% and S fuel 40%
D0S100  Diesel fuel 0% and S fuel 100%
E  Encoder
EGT  Exhaust gas temperature
HC  Hydrocarbon
IC  Internal combustion
LC  Load cell
NOx  Oxides of nitrogen
O2  Oxygen
POID  Period of ignition delay
PM  Particulate matter
PS  Pressure sensor
ROPR  Rise of pressure rate
S  Soybean oil methyl ester
SS  Speed sensor
TS  Temperature sensor
VE  Volumetric efficiency
y  Uncertainty

Introduction

The integration of artificial intelligence (AI) has signifi-
cantly contributed to the remarkable advancements wit-
nessed in the automotive industry over the past decade. AI 
has been successfully incorporated into various aspects of 
vehicle design, operation and optimization. Notably, in the 
prediction and analysis of engine performance and exhaust 
emissions, AI plays a pivotal role in enhancing engine effi-
ciency and reducing environmental impacts (Verma et al. 
2021a; Dasore et al. 2022). AI offers numerous potential 
applications, and one area that stands to benefit is the field 
of diesel engine technology. Diesel engines are generally 
suitable for heavy-duty applications viz. transportation, agri-
culture and power generation due to their inherent efficiency 
and torque characteristics. Diesel engines are commonly 
associated with emitting higher levels of harmful pollutants 
such as nitrogen oxides ( NOx ), particulate matter (PM) and 
other hazardous substances (Ineza Havugimana et al. 2023).

Conventional approaches of evaluating engine perfor-
mance, emissions and combustion traits typically rely on 
time-consuming and costly experimental and computational 

methods. These methods may have various constraints. 
Consequently, there is a growing demand for accurate and 
reliable prediction models that can anticipate engine per-
formance and emissions across different operating condi-
tions (Sharma 2021). Thus, employing AI techniques such 
as machine learning and neural networks has become a 
feasible and encouraging alternative approach in modern 
times. AI models can be trained using historical data from 
experimental tests to produce accurate predictions regarding 
engine performance. The specific characteristics include of a 
vehicle power output, fuel consumption, torque and exhaust 
emissions, namely carbon monoxide (CO), hydrocarbons 
(HC), NOx and PM (Sharma 2020; Tasdemir et al. 2021).

AI models can be trained to forecast CO, HC, NOx and 
PM emissions. Recently, there has been a strong emphasis 
on utilizing AI to forecast engine performance, resulting in 
a substantial amount of study in this field. Researchers have 
investigated different machine learning and neural network 
approaches to create precise and dependable models for fore-
casting engine performance indicators and emissions across 
a range of operating situations. Table 1 presents a summary 
of significant research undertaken in this field, together with 
their main results. The literature assessment confirms that 
ANN model is highly effective in tackling emission control 
and performance analysis, producing promising results and 
achievable benchmarks. AI approaches have demonstrated 
better results in engine control and diagnosis when com-
pared to fuzzy logic. Advancements in approaches like rein-
forcement learning and specific algorithms have the poten-
tial to improve engine control and diagnosis chores.

In the literature review, it has been established that ANN 
models exhibit high efficiency in addressing both emis-
sion control and performance analysis, yielding promising 
results and attainable benchmarks. Additionally, compared 
to fuzzy logic, AI techniques have shown superior outcomes 
in engine control and diagnosis. To further enhance engine 
control and diagnosis tasks, there is potential for advance-
ments in techniques such as reinforcement learning and the 
utilization of specialized algorithms.

This study builds upon previous research regarding the 
impact of soybean (biofuel) enrichment on a compression 
direct injection diesel engine running on various biofuel 
blends (D95S5, D80S20 and D60S40). This study examines 
the impact of engine speed on performance, combustion and 
emissions of a direct injection diesel injection by utilizing 
artificial intelligence to forecast the operational performance 
and emissions of diesel engines at different speed using a 
blend of soybean biofuel and diesel fuel. Accurate predic-
tive models can also be utilized to enhance engine design, 
improving efficiency and environmental impact. Further-
more, precise estimation of exhaust emissions can assist law-
makers in formulating stringent regulations and strategies for 
pollution control. Indian government is going ahead with a 
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plan to achieve ethanol blending target of 20% with petrol by 
2025–2026 and 5% of biodiesel by 2030. Furthermore, the 
govt. is encouraging for biodiesel production, research and 
analysis in terms of providing funding resources.

Material and method

Fuel and fuel characteristics

Only 1% of the world energy comes from biofuels, com-
pared to the 80% that comes from oil and its derivatives. The 
manufacture of biodiesel has a long history of overcoming 
challenges (Kiani et al. 2010). This is due to the fact that 
despite high conversion rates, technologies are still imma-
ture and have room for improvement. It is not possible to 
recycle the homogeneous catalysts that are used in industry, 
and the methanol that is utilised in the process of transes-
terification is derived from fossil fuels. Natural resources 
that are in competition with the food chain are another issue 
of concern due to the fact that agricultural land is required 
to produce both energy and sustenance (Prabhu et al. 2023; 
Aslan 2023). In light of this, one of the continuous issues 
facing the biodiesel sector is the search for further indus-
trial uses of glycerol, in addition to discovering non-food 
oil sources that are cheaper, more efficient and provide a 
larger selection of options. The vast majority of these items 
are disposed of in ways that are harmful to the environment, 
such as by dumping them in rivers or landfills (Bibin et al. 
2023; Verma 2021b). On the other hand, it is possible to 
use it in CI engines in lieu of diesel fuel manufactured from 
petroleum as a straight substitute. For the purpose of this 
experiment, an S biofuel is being used as the propellant for 
the vehicle (Fig. 1). Blends of diesel and S biofuel, referred 
to as “D95S5, D80S20 and D60S40,” include 5%, 20% and 
40% biofuel and 95%, 80% and 60% diesel by volume as 
shown in Table 2.

Experimental setup

The experimental work was conducted at the I.C. Engine 
Laboratory of the RGM College of Engineering and Tech-
nology, Nandyal. The tests were conducted with the engine 
running at variable speeds and under two different loads, 
with diesel/biofuel mixes D95S5, D80S20 and D60S40, 
with the injection pump completely open. Diesel (D) and 
D0S100 were also examined in this study since they dem-
onstrated stabilization under the circumstances that were 
tested. A common-rail injection system diesel engine with 
one cylinder, water cooling and four strokes was utilized 
for testing. The major engine specifications are included 
in the inventory that can be found in Table 3. Simple tools 
are used to monitor the engine performance and exhaust 

emissions under various operating conditions. A com-
muter equipped with IC ermine software for ignition con-
trol offers the ability to analyze engine performance and 
combustion data from tested samples. This application is 
used to receive signals for calculating factors such as heat 
transfer rate, cylinder pressure, fuel flow rate, air flow rate 
and calorimeter water flow rate. The AVL444 gas analyser 
is used to monitor CO

2
 and NOx emissions from the engine 

tailpipe. The AVL 437C smoke meter is used to measure 
the concentration of smoke emissions. The instruments 
used in this testing are regularly calibrated to account for 
the variability of all parameters. A pictorial representa-
tion of the experimental test rig is shown in Fig. 2. A total 
of 75 tests were carried out with the engine operating at 
speeds of 1200, 1500, 1800, 2100 and 2400 revolutions 
per minute. The load cell force values were in kilograms, 
which corresponded to torque value of 12.5 N.m. The load 
was stabilised by putting in place an electronic module 
that continually processed and showed the mean signal 
value coming from the dynamometer load cell. This was 
done in order to accomplish load stabilisation. The engine 
was warmed up for 5 min with the specific blend that was 
going to be tested before the actual test. Additionally, a 
cleaning of the supply tank was performed as part of the 
process of switching fuel blends in order to prevent any 
changes in the fuel mixes that were being tested. After the 

Fig. 1  Fuel samples
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exhaust emissions reached a steady state, the data from 
the test were recorded, and the gas analyser was used to 
examine them.

Heat release rate calculation

Since the engine is direct injection, the fuel is the sole 
mass flowing into the system, its sensitivity enthalpy is 
near to zero, and the chamber gas is optimal, and 
PV = mRT =

Cp

Cv

 and Cp = Cv + R, and the rate of heat 
release can be written as Eq. (2) (Zapata-Mina et al. 2023; 
Ayd 2021).

where θ is the crank angle, P is the pressure within the 
cylinder, dQ

d�
 is the rate at which heat is released, V is the 

fluctuation in volume in relation to and is the cause for the 

(2)
dQ

d�
=

1

(� − 1)
.V

dP

d�
+

�

(� − 1)
.P
dV

d�

Table 2  Properties of SME Fuel D0S100 D60S40 D80S20 D95S5 D (diesel)

Density (g/mL) 0.885 0.852 0.841 0.852 0.830

Kinematic viscosity ( mm
2

s
) 4.6 3.6 3.44 3.66 3.0

Lower calorific value (MJ/kg) 36.2 39.9 41.2 39.8 42.5
Flash point 120 66 64 63 76
CN 51 49.4 48.6 49.4 48

Table 3  Finding input value for engine

Limits Limits value

Engine stroke/cylinder 4/1
Injection pressure Higher than of 230 bar
Speed 1200–2400 rpm
Bore/stroke 87.5/110 mm
Advanced fuel injection timing 24.5° b TDC
Compression ratio 18:1
Method of cooling Water

Fig. 2  Experimental setup
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particular temperatures that are obtained from these values 
Eq. (3) (Zapata-Mina et al. 2023; Ayd 2021):

The temperature in the combustion chamber is deduced 
from Eq. (4) and is denoted by the symbol Tcc:

Tair Pair Vic in Eq. (4), where Tair, Pair is the air intake 
temperature, pressure and Vic is the volume of the air that 
was being compressed when the engine was at its top dead 
centre.

Uncertainty

The assessment of uncertainty involved in instrumentation 
is important in order to find overall error in the experimen-
tation. In the experiments that were carried out for this 
research, the combined standard uncertainty y is assessed 
using Eq. (5) (Bitire and Jen 2023, Altun et al. 2023):

Table 4 outlines the uncertainty for various instruments. 
The combined uncertainty was found to ± 3.57, which is 
well within permissible limit.

Artificial neural network

There are special computers called ANN that can solve 
hard modelling problems that are not linear and are very 

(3)� = 1338 − 6 × 10
−5Tcc + 1 × 10

−8T2

cc

(4)TCC =
P.V .Tair

PairVic

(5)
y =

√

(y2
TS

+ y2
PS

+ y2
SS
+ y2

E
+ y2

LC
+ y2

B
+ y2

CO
+ y2

CO2

+ y2
HC

+ y2
O2

+ y2
NOX

+ y2
BTE

+ y2
BSC

+ y2
EGT

)

complicated in a way that can be predicted. Instead of 
using an empirical calculation, the artificial neural network 
model learns from a large amount of input and output data. 
Remember that the activation function decides what the 
result is (Afzal et al. 2023; Elumalai et al. 2022; Veza et al. 
2022). The input value and the cut off value are both shown 
in the functions output. The input that is connected to a node 
is given a weight that shows how strong or important it is. 
Adding an offset element also changes the strength of the 
input, which makes it easier for the activation function to be 
transferred (Oguz et al. 2010). The architecture of the ANN 
is shown in Fig. 3.

ANNs are complicated modelling methods that copy 
neurons in the brain. Thanks to ANN, it is easier to find 
relationships between output and input factors that are not 
straight lines. Another good thing about ANN is that it 
can be quickly trained in a number of different ways. As 
part of this study, ANN was used to predict the predicted 
rise in efficiency. Figure 3 shows how the network is built. 
It has hidden layers that deal with input and output fac-
tors. Traindx (feed-forward back propagation) (Afzal et al. 
2021; Mokashi et al. 2021), learngdm (adaptive learning 

function) and tansig (transfer function) were used on very 
large datasets to teach the ANN model. Mean squared 
error (MSE) was used to measure the results. The entire 
data was divided in training set, testing set and validation 
set in the ratio of 70:15:15. The data was divided randomly 

Table 4  The y of the instrument

Instruments Uncertainty (%)

Pressure sensor  ± 0.5
Encoder  ± 0.2
Speed sensor  ± 1.0
Temperature sensor  ± 0.15
Burette for fuel measurement  ± 1.0
Load cell  ± 0.2
CO

2
 ± 1.0

O
2

 ± 0.3
CO  ± 0.3
NO

x
 ± 0.5

HC  ± 0.1
BTE  ± 1.5
BSC  ± 2.0
EGT  ± 1.5

Fig. 3  Structure of ANN model
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to ensure mix of all kind of data range for various afore-
mentioned datasets (Khatri et al. 2023; Thodda et al. 2023; 
Seo and Park 2023). The training process for the ANN 
model was finished after 1000 epoch. The model is now 
reporting a gradient of 10−5 and an error rate of 0 (Prakash 
and Dhanasekaran 2022; 2023). In addition, the validation 

data were also checked over a thousand times. As shown 
in Fig. 4 a, b, c and d, the learning network model was 
trained, validated, tested and looked at for regression. The 
results shown in Fig. 4 show that all training data, valida-
tion data and testing data show good fitting with R2 value 
around 0.9.

Fig. 4  Training, validation, test and regression a BTE, b SFC, c  CO2 emission and d NO
x
 emission
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Results and discussion

Brake‑specific fuel consumption

The change in the brake specific fuel consumption (BSFC) 
that occurs at various engine speeds can be seen in Fig. 5. 
Bio-diesel blends have a greater viscosity and a lower 
calorific value than diesel; all of them have shown a lit-
tle improvement in their BSFC ratings when compared to 
diesel. In addition, the addition of biofuel blends causes an 
increase in the delay caused by the burning of molecules of 
extra oxygen. The higher cylinder temperatures that result 
from an increase in combustion delay lead to an increase 
in the amount of fuel that is used. This work investigated 
the least BSFC for slow-speed circumstances (Sharma 
et al. 2023; Rajak et al. 2021). Increasing the engine’s 
rotational speed results in an increase in the amount of 
gasoline used overall. When it comes to figuring out how 
significant a biodiesel mix is, BSFC is one of the most 
important parameters to consider. A greater consumption 
of fuel results in higher running expenses and causes for 
worry from an economic point of view. Regardless of the 
speeds at which the engines were operating, greater BSFC 
rates were observed for all of the mixes with the excep-
tion of D95S5 and D80S20. It was claimed that the mini-
mal BSFC occurred at 1200 rpm, while the highest BSFC 
occurred at 2400 rpm. BSFC values for diesel, D95S5, 
D80S20, D60S40 and D0S100 at 2400 rpm with maxi-
mum capacity load were 0.265 kg/kWh, 0.276 kg/kWh, 
0.301 kg/kWh and 0.317 kg/kWh, respectively. D0S100 
had the highest BSFC value, at 0.38 kg/kWh.

BTE

The efficiency of the various biodiesel blend in the diesel 
engine may be measured using Brake thermal efficiency 
(BTE), which is one of the most accurate criteria available 
to assess engine performance. In this test, the BTE was 
determined by comparing the load conditions of the engine 
to a number of different fuel mixes. In general, the ther-
mal efficiency (BTE) of the fuel depends on two important 
characteristics, namely, the calorific value and the cetane 
number (Lalsangi et al. 2023). Because of diesel’s greater 
viscosity, it has a higher cetane number when compared to 
all biodiesel mixes. The pace at which something burns is 
dependent on a number of different physicochemical param-
eters, one of the most important of which is density. The 
change in BTE is shown here by figure across all of the 
different speeds. Because of its relatively high viscosity, 
biodiesel has a low thermal efficiency when compared to 
other fuels. Since of this, straight blends are not allowed 
to be used in diesel engines since they result in inefficient 
operation. In this portion of the test, several diesel mixes 
(D95S5, D80S20, D60S40 and D0S100) are put through 
their paces at a variety of engine speeds while operating 
at full capacity. Because of the increased combustion rates 
that occur at 1500 rpm, the thermal efficiency of the engine 
drops as the speed of the engine rises. On the other hand, 
the BTE of the mixes increases when the engine loading 
circumstances are greater. Maximum BTE values for diesel, 
D95S5, D80S20, D60S40 and D0S100 blends are as fol-
lows: 32.2%, 32.1%, 32.2%, 31.9% and 28.1%, respectively. 
The maximum recorded performance was achieved by a mix 
consisting of 20% biodiesel and 80% diesel. Because of the 
contribution of diesel as well as the low concentration of 
the blends, D80S20 fared the best out of all of the blends. In 
most cases, a significant reduction in thermal efficiency may 
be expected as the concentration of the mixes is increased. 
The viscosity of the fuel and the thermal efficiency of the 
system have characteristics that are diametrically opposed 
to one another (Fig. 6).

VE

Volumetric efficiency (VE) is one of the greatest methods to 
determine how successful the mixes are in a diesel engine, 
and it is also one of the ways. In this test, the TE was deter-
mined by comparing the load conditions of the engine to a 
number of different fuel mixes. Calorific value and cetane 
number are the main criteria determining fuel VE. Because 
of diesel’s higher viscosity compared to other types of bio-
fuel mixes, it has a lower cetane number. The pace at which 
something burns is dependent on a number of different phys-
icochemical parameters, one of the most important of which 
is density. The change in VE is shown here by figure across 
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Fig. 5  BSC with speed for blends
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all of the different speeds. The increased oxygen rates con-
tributed to the biofuel’s better volumetric efficiency when 
compared to conventional fuels. Since of this, the diesel 
engine does not make use of direct blends since doing so 
would result in improved efficiency. Here, the test mixes 
for diesel were D95S5, D80S20, D60S40 and D0S100. The 
results of these tests were 90.4%, 90.0%, 91.2%, 91.7% and 
92.4%, respectively. These results were acquired by running 
the engines at different speeds while operating at full capac-
ity (Fig. 7).

EGT

Through the use of a k-type thermocouple, the temperature 
of the exhaust gas may be utilised to monitor the temperature 
of the exhaust from an internal combustion engine. Exhaust 
gas temperature (EGT) has been observed such that changes 

in the air–fuel mixture may be seen. Figure 4 illustrates 
how the temperature of the gas behaves under a variety of 
different speed situations. Because biofuel contains more 
ester molecules than conventional gasoline, it ignites more 
quickly during the exhaust strokes. The EGT has been raised 
in comparison to the conditions imposed by the engine speed 
(Rajak et al. 2021; Lalsangi et al. 2023; Rajak et al. 2019). 
All biofuel blends exhibited an increase in the AET; how-
ever, the increases were between 5 and 20% lower when 
compared to diesel. On the other hand, the inclusion of SME 
resulted in a reduction in the AET of up to 20%. The tem-
peratures that were recorded by the AET for the diesel mixes 
D95S5, D80S20, D60S40 and D0S100 at 2400 rpm were as 
follows: 411 °C, 408 °C, 439.5 °C, 454 °C and 430.3 °C, 
respectively. When compared to diesel, D80S20, D60S40 
and D0S100, the EGT for the D95S5 was shown to have a 
significant decrease (Fig. 8).

MCP

The pressure that builds up in an engine’s cylinder during a 
power stroke is called “in-cylinder pressure.” This pressure 
equals the observed fuel burn rate for effort. The fuel–air 
mixture, ignition delay time, premixed combustion fuel 
burning, atomization, viscosity, evaporation and thermal 
energy also affected in-cylinder pressure (Gavaskar et al. 
2023; Musthafa et al. 2023). Compared to the figure, com-
plete fuel mixes and basic diesel fuel will have varied cyl-
inder maximum cylinder pressure (MCP) and engine rpm. 
The figure showed that diesel fuel, at a pressure of 122 bar, 
had a wider in-cylinder pressure range than other fuel 
blends. Next, diesel fuel blends D95S5, D80S20, D60S40 
and D0S100 had a lower range of cylinder pressure rise 
when the load was bigger and the engine rotated at 2400 
RPM. Then, the test fuel blends D95S5, D80S20, D60S40 
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and D0S100 had pressures of 115 bar, 110 bar, 99 bar and 
81.5 bar. Due to heat value in biodiesel fuel, higher pre-
mixed combustion burning, a longer ignition delay period, 
dual fuel operation and higher energy release and com-
bustion rate, fuel blends D95S5 and D80S20 had a range 
closer to diesel fuel. This happened for several reasons. 
The cylinder pressure of the mix D95S5 was lower than 
that of the premium diesel at higher load levels. As a con-
sequence of this, the cylinder pressure of the mix D95S5 
reduced by 5.7% in comparison to diesel fuel. At peak 
load circumstances with 2400 revolutions per minute, the 
cylinder pressure loss for the blends D80S20 and D60S40 
was reduced by 9.8% and 18.0%, respectively, as compared 
to diesel. In a dual-fuel engine, rapid combustion gener-
ates more heat, which in turn boosts the cylinder pres-
sure and temperature (Zandie et al. 2023; Abishek et al. 
2024). At lower loads, the fuel mixture has a tendency 
to be rich, which leads to incomplete combustion. This 
happens due to the gas being supplied at reduced pres-
sures. When operating at reduced loads, some fuel sample 
remains unburned, leading to concerns about emissions 
(Mani et al. 2011; Zhang et al. 2020) (Fig. 9).

ROPR

The rate of pressure rise (ROPR) is a crucial factor in eval-
uating the efficiency of a biofuel blend, and incorporating 
the soybean biofuel into diesel engine together with diesel 
fuel has significantly reduced the ROPR. ROPR reduced 
when 5, 20 and 40% soybean was added to diesel fuel 
at all the engine conditions tested in the current study. 
The reduction in ROPR of 14% and 7.4% for 5% and 20% 
soybean biofuel blends may be due to the higher oxygen 
content and early burring of soybean biofuel (Fig. 10).

Smoke emission

The smoke emission is an important factor in evaluating a 
biofuel blend, and using S biofuel in the diesel engine with 
diesel fuel has greatly reduced smoke emission, improving 
combustion kinetics (Afzal et al. 2023). The current study 
shows a significant reduction in smoke emissions compared 
to Santhosh et al., who found that adding diesel, biodiesel 
and ethanol to diesel fuel increases emissions and decreases 
CI engine performance (Effendy et al. 2021). Kandasamy 
et al. (2019) found that adding 20% ethanol to basic pet-
rol (B5) significantly reduced smoke. Smoke forms from 
incomplete combustion in the fuel-rich zone at high tem-
perature and pressure. More specifically, this happens at 
the fuel spray’s centre. Oxygenates added to diesel fuel are 
often thought to oxygenate the pyrolysis zone of the burn-
ing diesel spray, lowering smoke (Kandasamy et al. 2019; 
Gowrishankar and Krishnasamy 2023). In the present study, 
smoke emission decreased with the addition of 5% and 20% 
S biofuel to diesel in all tested engine boundary conditions; 
however, smoke emission increased when the biofuel con-
tent exceeded 20%. For 5% and 20%, S fuel blend reduction 
in smoke emission was by 10% and 4%, respectively; this 
may be a result of biofuel’s higher oxygen content (Fig. 11).

CO2 emission

The carbon dioxide ( CO
2
 ) emission is an essential component 

in assessing the performance of a biofuel blend, and the 
utilisation of the S biofuel in the diesel engine with diesel fuel 
has slightly increased the CO

2
 emission; thus, the utilisation 

of the S biofuel in the diesel is enhancing the combustion 
kinetics of the reaction (Jeyaseelan et al. 2023). In comparison 
to the findings of researches, which state that the addition 
of biofuel to diesel fuel causes an increase in emissions to 
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a greater degree, which in turn increases the performance 
characteristics of a CI engine, the results of the current study 
demonstrate a significant improvement in the amount of  CO2 
emission that is emitted into the atmosphere (Fan et al. 2023). 
In the present study, the value of CO

2
 emission was obtained 

to be 855.3 g/kWh for diesel, 867 g/kWh for D95S5, 869.7 g/
kWh for D80S20, 974.4 g/kWh for D60S40 and 1098 g/kWh 
for D0S100;  CO2 emission increased with the addition of 5% 
20% and 40% S biofuel to diesel in all tested engine boundary 
conditions. Five per cent and 20% S fuel blend increased in 
CO

2
 emission by 1.3% and 1.6%, respectively; this may be a 

result of biofuel higher oxygen content.

NO
x
 emission

Figure 12 shows that varying percentages of soybean biofuel 
with diesel fuel as D95S5, D80S20 and D60S40 blends had 

low nitrogen oxide ( NOx ) emissions at 1200, 1500, 1800, 
2100 and 2400 rpm with the engine at full capacity. One 
of the primary contributors to the production of NOx is the 
presence of high temperatures inside the cylinder. In a simi-
lar fashion, an excessive amount of molecular oxygen in the 
fuel may also encourage the generation of NOx . This occurs 
because the molecular oxygen in the fuel reacts with nitro-
gen during the combustion process to produce NOx emis-
sions in the exhaust.

This process is referred to as the Zeldovich reaction. 
Research conducted by Masera et al. in 2023 found that 
biofuel engines produce high levels of NOx emissions due to 
the presence of molecular oxygen. Low NOx emissions were 
recorded due to low-temperature combustion (Hoekman and 
Robbins 2012). The study found that the D95S5 and D80S20 
fuel blends, which contain 5% and 20% of soybean biofuel, 
respectively, produced very low levels of NOx emissions in 
all tested scenarios. At 2400 rpm, the D80S20 blend with 
20% share of soybean biofuel produces lower NOx emissions 
than diesel fuel up to 22.2%. Using oxygenated soybean 
enhances fuel properties, resulting in decreased residence 
time and reduces delay duration. Soybean biofuel helps 
produce a lower adiabatic flam temperature, minimizes 
temperature rise in the surrounding area and promotes 
low-temperature combustion (Mirhashemi and Sadrnia 
2020; Kalyani et  al. 2023;  Masera and Hossain 2023). 
As a consequence of this, the additive in the D80S20 mix 
demonstrates significantly reduced levels of NOx emissions. 
The significant downfall in NOx emission of D80S20 blend 
might be credited to elevated oxygen level and high moisture 
level of biodiesel. An elevated moisture percentage in 
biodiesel leads reduction in chamber temperature which 
in turn limits the NOx formation (Sarıdemir and Agbulut 
2022; Agbulut et al. 2020; Prakash and Dhanasekaran 2019) 
(Fig. 13).
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Conclusion

The primary experimental results from the present investigation 
are outlined below.

• Diesel fuel operated at 1500 rpm exhibits a better brake 
thermal efficiency of 32.4%, which is 1.5% higher than diesel 
fuel run at 2400 rpm. Soybean biofuel usage led to a small 
decrease in brake thermal efficiency under all investigated 
conditions. The brake thermal efficiency of the D80S20 
engine operating at various speeds exhibits slightly lower 
value compared to diesel across all rpm circumstances.

• Brake-specific fuel consumption increases by 1.8% for 
diesel fuel running at 2400 rpm compared to 1500 rpm. 
Additionally, using a blend of 20% soybean biofuel and 
diesel fuel results in a 7.1% increase in brake-specific 
fuel consumption at 1500 rpm.

• The combustion characteristics, such as cylinder pres-
sure, were determined for diesel (D) and D80S0 fuel 
operating at 1500  rpm with pressure of 98 bar and 
92.2 bar, at a compression ratio of 18 and full load. 
ROPR reductions of 14% and 7.4%, respectively, for 
5% and 20% S fuel blends may be the consequence of 
biofuel higher oxygen content and early combustion.

• At 2400 rpm with maximum load, the CO
2
 emission 

value was determined to be 855.3 g/kWh for diesel, 
867  g/kWh for D95S5, 869.7  g/kWh for D80S20, 
974.4 g/kWh for D60S40 and 1098 g/kWh for D0S100. 
CO

2
 emission increased with the addition of 5%, 20% 

and 40% S biofuel to diesel in all tested engine bound-
ary conditions. CO

2
 emissions rose 1.3% and 1.5% for 

5% and 20% S blends, respectively.
• According to this study, the D95S5 and D80S20 mix-

tures containing 5% and 20% biofuel, respectively, had 
minimal NOx emissions under all examined conditions. 
At 2400 revolutions per minute, the D80S20 blend with 
a 20% blend of biofuel produces lower NOx emissions 
than diesel fuel.

To investigate the impact of various types of nanopar-
ticles added to the D80S20 blend, optimize engine param-
eters with the use of response surface methodology, Tagu-
chi method and artificial neural networks.
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