• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Macro-mesoscopic strength features and fissure extension of X-shaped marble exposed to uniaxial compression conditions

View/Open

Tam Metin / Full Text (9.979Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Jiang, Meilin
Cao, Shuai
Yılmaz, Erol

Metadata

Show full item record

Citation

Jiang, M., Cao, S., & Yilmaz, E. (2025). Macro-mesoscopic strength features and fissure extension of X-shaped marble exposed to uniaxial compression conditions. Construction and Building Materials, 463, 140035. https://doi.org/10.1016/j.conbuildmat.2025.140035

Abstract

In room and pillar mining, rooms cause stress redistribution, and pillars are prone to stress concentration and repetitive incoming pressures. Hence, pillars may spall along some key joints/fissures to form X-shaped broken pillars under high-stress conditions. This study uses mechanical tests and numerical simulations to reproduce strength characteristics and fissure evolution of X-shaped cracked rock pillars (X-CRP) covering different center diameters (D50) under uniaxial compression conditions from macro-mesoscopic perspectives. The research's conclusions are as follows: X-CRP shows obvious brittle characteristics under axial pressure, and the peak stresses of X-CRP-50 and X-CRP-20 correspond to maximum and minimum values of 95.2 MPa and 21.42 MPa, respectively, and peak stress drops by a decrease of D50; Variation of dissipated energy (ud) of X-CRP is related to stress-strain response, by high and low energy storage rates for X-CRP-20 and X-CRP-40, respectively. Numerical model outcomes specify that the force chain's strength and the particle vector velocity's magnitude are linked with D 50 and stress level, and the smaller the D50, the earlier the stress concentration appears and the larger the value. X-CRP's macroscopic failure style is allied by D50, X-CRP-50 exhibits tension-shear damage, X-CRP-40 and X-CRP-30 mainly reflect shear-tension damage, the upper part of which both produce large shear slip, and X-CRP- 20 produces transverse shear at D50, with a small area of shear surface, and the sample undergoes integral structural The results of the study can make up the blank of the complex mechanical properties and rupture behavior of X-CRP, and offer a basis for guessing service life and bearing capacity of underground X-shaped broken pillars, the selection of reinforcement method and support timing.

Source

Construction and Building Materials

Volume

463

URI

https://doi.org/10.1016/j.conbuildmat.2025.140035
https://hdl.handle.net/11436/10005

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.