• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting semen analysis parameters from testicular ultrasonography images using deep learning algorithms: an innovative approach to male infertility diagnosis

View/Open

Full Text / Tam Metin (3.159Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Sağır, Lütfullah
Kaba, Esat
Hüner Yiğit, Merve
Taşçı, Filiz
Uzun, Hakkı

Metadata

Show full item record

Citation

Sagir, L., Kaba, E., Huner Yigit, M., Tasci, F., & Uzun, H. (2025). Predicting Semen Analysis Parameters from Testicular Ultrasonography Images Using Deep Learning Algorithms: An Innovative Approach to Male Infertility Diagnosis. Journal of Clinical Medicine, 14(2), 516. https://doi.org/10.3390/jcm14020516

Abstract

Objectives: Semen analysis is universally regarded as the gold standard for diagnosing male infertility, while ultrasonography plays a vital role as a complementary diagnostic tool. This study aims to assess the effectiveness of artificial intelligence (AI)-driven deep learning algorithms in predicting semen analysis parameters based on testicular ultrasonography images. Materials and Methods: This study included male patients aged 18–54 who sought evaluation for infertility at the Urology Outpatient Clinic of our hospital between February 2022 and April 2023. All patients underwent comprehensive assessments, including blood hormone profiling, semen analysis, and scrotal ultrasonography, with each procedure being performed by the same operator. Longitudinal-axis images of both testes were obtained and subsequently segmented. Based on the semen analysis results, the patients were categorized into groups according to sperm concentration, progressive motility, and morphology. Following the initial classification, each semen parameter was further subdivided into “low” and “normal” categories. The testicular images from both the right and left sides of all patients were organized into corresponding folders based on their associated laboratory parameters. Three distinct datasets were created from the segmented images, which were then augmented. The datasets were randomly partitioned into an 80% training set and a 20% test set. Finally, the images were classified using the VGG-16 deep learning architecture. Results: The area under the curve (AUC) values for the classification of sperm concentration (oligospermia versus normal), progressive motility (asthenozoospermia versus normal), and morphology (teratozoospermia versus normal) were 0.76, 0.89, and 0.86, respectively. Conclusions: In our study, we successfully predicted semen analysis parameters using data derived from testicular ultrasonography images through deep learning algorithms, representing an innovative application of artificial intelligence. Given the limited published research in this area, our study makes a significant contribution to the field and provides a foundation for future validation studies.

Source

Journal of Clinical Medicine

Volume

14

Issue

2

URI

https://doi.org/10.3390/jcm14020516
https://hdl.handle.net/11436/10021

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • TF, Cerrahi Tıp Bilimleri Bölümü Koleksiyonu [1224]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1573]
  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [700]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.