• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geopolymerization of soil by sodium silicate as an approach to control wind erosion

Thumbnail

View/Open

Full Text / Tam Metin (1.225Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Koohestani, Behrooz
Darban, Ahmad Khodadadi
Mokhtari, Pozhhan
Darezereshki, Esmaeel
Yılmaz, Erol

Metadata

Show full item record

Citation

Koohestani, B., Darban, A.K., Moktari, P., Darezereshki, E., Yilmaz, E. (2021). Geopolymerization of soil by sodium silicate as an approach to control wind erosion. International Journal of Environmental Science and Technology, 18(7), 1837-1848. https://doi.org/10.1007/s13762-020-02943-2

Abstract

Transportation of fugitive dust over long distances because of wind erosion is a severe environmental threat. Different approaches are experienced to control wind erosion, but durability and costs are the main drawbacks of existing techniques. This study hereby investigates sodium silicate usage as an alkaline additive to bind soil particles and control wind erosion. Sodium silicate is an environmentally safe material and the precipitated inorganic silica gel from which has the affinity with soil texture that makes the overall geopolymerization materials and method clean and environmentally friendly. the neutral condition of natural soils can reduce the alkalinity of sodium silicate's alkalinity upon contact to the silica gel formation and soil geopolymerization. Different water-diluted solutions containing 50, 35, 20 wt% sodium silicate were prepared and sprayed over the soil surface while various specifications of the stabilized part were evaluated. It was found that interparticle cohesion, shear strength, and wind erosion were affected by sodium silicate content, as explained through a series of immersion, direct shear, and wind tunnel tests. A combination of mechanical and chemical forces can explain the interparticle cohesion since no chemical bonding was established between silica gel and soil particles, as described in Fourier-transform infrared spectroscopy analysis. Scanning electron microscopy coupled with energy-dispersive spectroscopy and thermogravimetric experiment displayed soil particles' aggregation without mineralogical alteration. the achieved results implicate sodium silicate's promising role as a stabilizer to bind the soil particles and control wind erosion.

Source

International Journal of Environmental Science and Technology

URI

https://doi.org/10.1007/s13762-020-02943-2
https://hdl.handle.net/11436/1003

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.