• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave

Thumbnail

View/Open

Full Text / Tam Metin (4.327Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Yan, Baoxu
Zhu, Wancheng
Hou, Chen
Yılmaz, Erol
Saadat, Mahdi

Metadata

Show full item record

Citation

Yan, B., Zhu, W.C., Hou, C., Yılmaz, E. & Saadat, M. (2020). Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave. Construction and Building Materials, 249, 118733. https://doi.org/10.1016/j.conbuildmat.2020.118733

Abstract

Cemented paste backfill (CPB) is broadly used for underground backfilling, improving the mechanical performance through the modification of its composition and, therefore, its microstructure and characteristics. in order to assess the applicability of ultrasonic waves to better comprehend relations among composition-microstructure-characteristics; an experimental program was realized using the magnitude and frequency spectrum of ultrasonic P-wave which is considered as an effective system for characterizing the hardening processes of cementitious materials. in this study, different binder contents (3, 5 and 7 wt%) and curing temperatures (20 and 35 degrees C) were tested for investigating CPB's hardening processes. Silica fume (0, 5 and 20 wt% of binder) was used as an additive in replace of binder to determine its effect on behavior of ultrasonic waves. Component (TG and DTG) and microanalysis (SEM) were adopted to improve the understanding of ultrasonic behavior. Results show that there is a positive relationship between the strength and magnitude of ultrasonic P-wave in CPB, except for the sample with 3 wt% binder. the magnitude and frequency spectrum of ultrasonic P-wave is more sensitive than P-wave velocity to reflect the variation in the backfill strength. Higher binder content can densify the microstructure of CPB with longer curing time and reduce the energy attenuation of ultrasonic P-wave, resulting higher magnitude obtained. the addition of silica fume makes CPB having a finer pore structure enhanced, thereby improving in the strength, P-wave velocity and magnitude. the energy attenuation of ultrasonic P-wave can be notably weakened at a curing temperature of 35 degrees C due to a dense network formed by both hydration products and tailings. the magnitude and frequency spectrum of ultrasonic P-wave can be capable of reflecting and characterizing the pore structure, hydration processes and water content in CPB comprehensively. Consequently, the proposed technique can be well used to illustrate the hardening processes of CPB and hence improve the understanding of its early-age behavior. (C) 2020 Elsevier Ltd. All rights reserved.

Source

Construction and Building Materials

Volume

249

URI

https://doi.org/10.1016/j.conbuildmat.2020.118733
https://hdl.handle.net/11436/1063

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.