• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physiological and growth responses of black sea salmon (salmo labrax) to long-term salinity and high carbon dioxide stress

View/Open

Full Text / Tam Metin (1.169Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2026

Author

Özdemir, Muhammed Doğan
Karabulut, Huriye Ariman
Düzgüneş, Zehra Duygu
Özel, Osman Tolga

Metadata

Show full item record

Citation

Özdemir, M.D., Karabulut, H.A., Düzgüneş, Z.D., Özel, O.T. (2026). Physiological and Growth Responses of Black Sea Salmon (Salmo labrax) to LongTerm Salinity and High Carbon Dioxide Stress. Turkish Journal of Fisheries and Aquatic Sciences, 26(1), TRJFAS28095. https://doi.org/10.4194/TRJFAS28095

Abstract

Black Sea salmon (Salmo labrax), an anadromous salmonid species of regional importance, is increasingly considered for aquaculture in the Black Sea. This study investigates the physiological and growth responses of Black Sea salmon to seawater transfer, with a particular focus on carbon dioxide (CO₂) stress. The experiment began on 5 July 2022 with 720 fish (76.68±15.34 g) reared under semi-controlled conditions using a freshwater recirculating aquaculture system (RAS). On 12 October 2022, a group of fish was transferred to Black Sea water (18 ppt), and a subgroup was exposed to elevated CO₂ (1000 µatm pCO₂) until the end of the trial on 7 March 2023. Exposure to carbon dioxide showed negligible or minimal effects on seawater adaptation and growth. In contrast, physiological markers such as gill Na⁺/K⁺-ATPase (NKA) activity and the expression of nkaα1a, nkaα1b, and nkcc1a genes, along with growth metrics—including specific growth rate (SGR), condition factor (K value), and liver gene expression of igf-I, igfbp1b, ghr1, and ctsl—indicated that the fish were not physiologically prepared for seawater transfer in autumn. These findings suggest that the commonly practiced autumn sea transfer in the region may lead to suppressed growth and suboptimal performance. The results emphasize the importance of aligning seawater transfer with the smoltification window to support fish health and optimize aquaculture outcomes in Black Sea salmon farming.

Source

Turkish Journal of Fisheries and Aquatic Sciences

Volume

26

Issue

1

URI

https://doi.org/10.4194/TRJFAS28095
https://hdl.handle.net/11436/10705

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6118]
  • SUF, Su Ürünleri Yetiştiriciliği Bölümü Koleksiyonu [168]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.