• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of different drying methods on Camellia sinensis: Investigation of quality parameters and drying kinetics using artificial neural networks

View/Open

Full Text / Tam Metin (11.05Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Topal, Muhammed Emin
Şahin, Birol

Metadata

Show full item record

Citation

Topal, M. E., & Şahi̇n, B. (2025). Effects of different drying methods on Camellia sinensis: Investigation of quality parameters and drying kinetics using artificial neural networks. LWT, 229, 118172. https://doi.org/10.1016/j.lwt.2025.118172

Abstract

This study aimed to compare the drying kinetics and quality outcomes of tea leaves subjected to four different drying methods—freeze drying (FD), hot air drying (HAD), infrared drying (ID), and microwave drying (MWD). Six thin-layer drying models (Alibas, Demir et al. Henderson & Pabis, Improved Midilli-Kucuk, Logarithmic, and Weibull) were fitted to the experimental data. Artificial neural network (ANN) models were also developed to predict the dimensionless moisture ratio (MR) using drying time and process parameters as inputs. The ANN model showed high prediction performance, with R2 values reaching up to 0.9999. In addition, the ANN model achieved strong generalization performance, with Rc2 = 0.9967, Rp2 = 0.9132, and RPD = 3.3936, confirming its excellent predictive ability. Quality assessments revealed that FD preserved the highest antioxidant capacity (up to 94.7 ± 0.1 %), followed by MWD, HAD, and ID. The lowest water activity, enhancing shelf life, was observed in FD (0.29 ± 0.01 to 0.34 ± 0.01), while MWD showed the highest (0.41 ± 0.04 to 0.64 ± 0.01). Color analysis indicated the least change in FD and the most in ID. Overall, FD produced the highest quality tea, while MWD offered faster drying. ANN models effectively captured nonlinear drying behaviors. This integrated modeling and evaluation approach can support future optimization and quality control strategies in tea drying processes. Although the unified ANN yielded high accuracy (ALL R = 0.9999), model generalization is presently limited to laboratory-scale trials on a single tea cultivar. Further validation on industrial dryers and diverse leaf grades is required, and the ‘black-box’ nature of ANNs complicates direct physico-chemical interpretation. This is the first known study to integrate both artificial neural network (ANN) and mathematical modeling approaches to comprehensively assess the drying kinetics and quality attributes of tea leaves subjected to four different drying methods.

Source

LWT

Volume

229

URI

https://doi.org/10.1016/j.lwt.2025.118172
https://hdl.handle.net/11436/10708

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [360]
  • Scopus İndeksli Yayınlar Koleksiyonu [6165]
  • WoS İndeksli Yayınlar Koleksiyonu [5350]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.