• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional thermoelastic analysis of infinite porous materials with cylindrical cavities and voids using a modified space-time-nonlocality kernel

View/Open

Full Text / Tam Metin (2.964Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Abouelregal, Ahmed E.
Yaylacı, Murat
Alhashash, Abeer
Alsaeed, Salman S.

Metadata

Show full item record

Citation

Abouelregal, A. E., Yaylacı, M., Alhashash, A., & Alsaeed, S. S. (2025). Fractional thermoelastic analysis of infinite porous materials with cylindrical cavities and voids using a modified space-time-nonlocality kernel. International Journal of Mechanics and Materials in Design. https://doi.org/10.1007/s10999-025-09783-3

Abstract

This paper presents a novel thermoelastic model designed to analyze the behavior of porous materials containing voids. The proposed model extends the two-phase lag theory (TPL) by incorporating inherent delays in thermal responses specific to such materials. A significant advancement over traditional elastic models is the inclusion of both spatial and temporal nonlocal effects, which are essential for accurately capturing the intricate microscopic interactions characteristic of porous structures. Furthermore, the integration of fractional Caputo-tempered derivatives into the heat conduction equation enhances the representation of memory effects, offering deeper insights into how prior deformations and thermal influences shape material behavior. The validity and applicability of the model were demonstrated through a detailed analysis of the transient thermo-mechanical response of an infinite porous body with a cylindrical cavity subjected to a time-dependent heat flux. Results were compared with findings from existing literature, enabling an evaluation of the effects of nonlocal interactions, phase delays, and fractional parameters on the observed responses. This comprehensive approach provides a more refined understanding of the dynamics of porous materials under combined thermal and mechanical loads, advancing the theoretical framework for such materials.

Source

International Journal of Mechanics and Materials in Design

URI

https://doi.org/10.1007/s10999-025-09783-3
https://hdl.handle.net/11436/10716

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [275]
  • Scopus İndeksli Yayınlar Koleksiyonu [6165]
  • WoS İndeksli Yayınlar Koleksiyonu [5350]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.