• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A shear deformable numerical approaches for the static analysis of bi-directional functionally graded beams

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Turan, Muhittin
Kahya, Volkan
Yaylacı, Ecren Uzun
Yaylacı, Murat

Metadata

Show full item record

Citation

Turan, M., Kahya, V., Yaylaci, E. U., & Yaylaci, M. (2025). A shear deformable numerical approaches for the static analysis of bi-directional functionally graded beams. Advances in Nano Research, 18(2), 143–162. https://doi.org/10.12989/ANR.2025.18.2.143

Abstract

This paper introduces a highly accurate and computationally efficient shear deformable finite element model for the static analysis of bi-directional functionally graded beams (BD-FGBs) with various boundary conditions grounded in the first-order shear deformation theory (FSDT). The model, featuring ten degrees of freedom across five nodes, excels in capturing both axial and shear deformations with remarkable precision while maintaining a streamlined formulation. In a novel approach, Artificial Neural Network (ANN) methods are also employed alongside the finite element analysis, offering a dual-method investigation into the static behavior of BD-FGBs. This paper aims to further advance the understanding of BD-FGM beams by exploring their static behavior under diverse loading conditions and boundary constraints, employing advanced finite element methods and artificial neural network techniques. The material properties are modeled through power-law distributions, and the governing equations are derived from Lagrange’s principle. Displacements and stresses were computed under different boundary conditions (BCs), slenderness ratios (L/h), and power-law indices (px, pz). Comparative analysis with existing literature reveals the superior suitability of the proposed finite element model for static analysis, while the ANN approach further reinforces its potential as a robust, complementary tool. The innovative combination of these methods promises to offer significant contributions to the field and provides new insights into the behavior of BD-FGBs under static loads.

Source

Advances in Nano Research

Volume

18

Issue

2

URI

https://doi.org/10.12989/ANR.2025.18.2.143
https://hdl.handle.net/11436/10758

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [269]
  • Scopus İndeksli Yayınlar Koleksiyonu [6118]
  • SUF, Su Ürünleri Yetiştiriciliği Bölümü Koleksiyonu [168]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.