• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hi-labspermtracking: a novel and high-quality sperm tracking dataset with an advanced ensemble detection and tracking approach for real-world clinical scenarios

Göster/Aç

Full Text / Tam Metin (7.549Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2025

Yazar

Aktaş, Abdulsamet
Serbes, Görkem
Uzun, Hakkı
Yiğit, Merve Hüner
Aydın, Nizamettin
İlhan, Hamza Osman

Üst veri

Tüm öğe kaydını göster

Künye

Aktas, A., Serbes, G., Uzun, H., Yigit, M. H., Aydin, N., & Ilhan, H. O. (2025). Hi‐LabSpermTracking: A Novel and High‐Quality Sperm Tracking Dataset with an Advanced Ensemble Detection and Tracking Approach for Real‐World Clinical Scenarios. Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202500115

Özet

Sperm motility, a critical factor in diagnosing male infertility, requires computer-based solutions due to the limitations of manual evaluation methods. This study introduces the Hi-LabSpermTracking dataset, comprising 66 videos (60 s each, 10 fps) collected from 14 patients and meticulously annotated by experts. Unlike similar datasets, these uninterrupted, long-duration videos enable continuous tracking of individual sperm cells, each assigned a unique ID throughout the video, supporting both sperm detection and tracking tasks. Experimental evaluations employ you only look once v8 (YOLOv8), real-time detection transformer, and simple online and realtime tracking with a deep association metric across three scenarios. In Scenario I (sperm detection), the YOLOv8n model achieves 98.9% mAP50 and 97.9% F1-score. In Scenario II (sperm tracking), performance metrics include 83.88% mAP50, 87.63% F1-score, 72.27% higher order tracking accuracy (HOTA), and 77.88% multiple object tracking accuracy (MOTA). Scenario III simulates real-world challenges by separating training and testing videos. Ensemble methods are applied, with the proposed mean ensemble achieving superior results: 86.55% mAP50, 87.87% F1-score, 66.66% HOTA, and 76.42% MOTA. The Hi-LabSpermTracking dataset enables robust sperm tracking research, while the mean ensemble method amplifies accuracy by uniting model strengths.

Kaynak

Advanced Intelligent Systems

Bağlantı

https://doi.org/10.1002/aisy.202500115
https://hdl.handle.net/11436/10789

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [6142]
  • TF, Cerrahi Tıp Bilimleri Bölümü Koleksiyonu [1235]
  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [707]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.