• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparative study of 137Cs dose factors for constant and depth-dependent soil densities

View/Open

Full Text / Tam Metin (212.6Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2025

Author

Çelik, Necati
Akçay, Nilay
Çevik, Uğur

Metadata

Show full item record

Citation

Çelik, N., Akçay, N., & Çevik, U. (2025). A Comparative Study of 137Cs Dose Factors for Constant and Depth-dependent Soil Densities. Health Physics. https://doi.org/10.1097/hp.0000000000001995

Abstract

Accurate assessment of external radiation dose rates from 137Cs is essential for evaluating radiological risk in environmental and occupational settings. This study refines dose conversion coefficient calculations by incorporating depth-dependent soil density and addressing limitations in conventional methods that assume constant soil density. We calculated dose conversion coefficients for 137Cs in soil, considering both exponential and Gaussian distributions of activity concentration. Using two models, one with constant density and another with variable density as a function of depth, we compared dose rates to quantify the effect of soil density variations. Results indicate that dose rates are consistently higher when depth-dependent density is applied. The effect is more pronounced when 137Cs activity is distributed over larger depths (i.e., greater relaxation lengths) or when broader Gaussian distributions are considered. This suggests that assuming constant soil density may lead to underestimations of dose rates, especially in heterogeneous or compacted soils. Our findings emphasize the importance of accounting for density variability in dose calculations to enhance radiological risk assessments for areas contaminated with 137Cs.

Source

Health Physics

URI

https://doi.org/10.1097/hp.0000000000001995
https://hdl.handle.net/11436/10929

Collections

  • FEF, Fizik Bölümü Koleksiyonu [361]
  • Scopus İndeksli Yayınlar Koleksiyonu [6245]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.