• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The anticipation of compressive strength of geopolymer mortars with tree-based machine learning models: effect of training-testing ratios

View/Open

Full Text / Tam Metin (5.166Mb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Çakmak, Talip
Ustabaş, İlker

Metadata

Show full item record

Citation

Cakmak, T., & Ustabas, İ. (2025). The anticipation of compressive strength of geopolymer mortars with tree-based machine learning models: effect of training-testing ratios. Asian Journal of Civil Engineering, 26(6), 2657-2670. https://doi.org/10.1007/s42107-025-01336-5

Abstract

Concrete, produced from cement, is the best greatly utilised building material. However, greenhouse gas discharges from cement preparation and consumption cause significant damage to the environment. Geopolymer production, which is one of the important alternatives, plays an important role in preventing this problem. In this study, tree-based machine learning (ML) algorithms such as Gradient Boosting Regression (GBR), Decision Tree (DT), Extremely Randomized Tree (ET), and Random Forest (RF) were utilized to anticipate the compressive strength (CS) of silica fume substituted obsidian-based two-component geopolymer mortars with different alkali activator properties. These ML algorithms were implemented using different train-test ratios (0.6 − 0.4, 0.7 − 0.3, 0.8 − 0.2, 0.9 − 0.1). The prediction and generalization performances of the applied models were measured by applying different statistical metrics like R2, MAE, MAPE, MSE and RMSE. For the prediction of compressive strength, the GBR algorithm showed a better prediction performance than the other algorithms, with an R2 value of 0.972. The RF algorithm showed the most consistent and balanced prediction performance. Significant decreases in R2adjusted values were observed as the training rate increased. This is due to the tendency of the models to overlearn as the training rate increases. The results show that the models perform best at a training rate of 70%, and the generalization execution of the models reduces importantly as the training rate augments. The machine learning method applied to the forecasting of the CS of geopolymer mortars provides significant benefits to engineering applications due to its contributions in terms of workload and time savings.

Source

Asian Journal of Civil Engineering

Volume

26

Issue

6

URI

https://doi.org/10.1007/s42107-025-01336-5
https://hdl.handle.net/11436/10943

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [288]
  • Scopus İndeksli Yayınlar Koleksiyonu [6292]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.