• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating the effect of grooves on the hydraulic parameters of a sharp-crested trapezoidal side weir

View/Open

Full Text / Tam Metin (794.2Kb)

Access

info:eu-repo/semantics/openAccess

Date

2025

Author

Daneshfaraz, R.
Aminvash, E.
Omidvar, R.
Süme, Veli
Marangoz, H.O.
Yılmaz, Erol

Metadata

Show full item record

Citation

Daneshfaraz, R., Aminvash, E., Omidvar, R., Süme, V., Marangoz, H. O., & Yılmaz, E. (2025). Investigating the Effect of Grooves on the Hydraulic Parameters of a Sharp-crested Trapezoidal Side Weir. Journal of Applied Fluid Mechanics, 18(10), 2465-2475. https://doi.org/10.47176/jafm.18.10.3538

Abstract

This study investigates the impact of groove implementation on the hydraulic performance of sharp-edged trapezoidal side weirs, focusing on discharge coefficients and shear stress behavior. The simulation processes were carried out using the VOF (Volume of fluid) methodology in combination with the RNG (Re-normalize group) model for turbulence. The validation with experimental data by comparison showed that the relative error in the range of 0.4-2.6%. It was found from the results that the discharge coefficient increases in the no-grooved model and decreases in the grooved model. The identified variation of the discharge coefficient range through different Froude numbers lies between 0.6 and 0.8, where the discharge coefficient of the no-grooved model is larger by 2.68% compared to that of the grooved model. The grooved model was more effective for lower flow rates, while the no-grooved model was more effective for higher flow rates. In all cases, in both models, the discharge coefficient increases with the Froude number, with a greater increase observed in the no-grooved configuration (19.64% higher). The research indicated that grooves significantly reduce shear stresses at the crest of the weir, reducing further damage to the structure. The variation in shear stress between the two models was most evident under high flow conditions, demonstrating the efficiency of the grooved model in reducing harmful stresses and energy dissipating.

Source

Journal of Applied Fluid Mechanics

Volume

18

Issue

10

URI

https://doi.org/10.47176/jafm.18.10.3538
https://hdl.handle.net/11436/10980

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [288]
  • WoS İndeksli Yayınlar Koleksiyonu [5386]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.