• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of hydrofluoric acid leaching and roasting on mineralogical phase transformation of pyrite in sulfidic mine tailings

Thumbnail

View/Open

Full Text / Tam Metin (2.988Mb)

Access

info:eu-repo/semantics/openAccess

Date

2020

Author

Koohestani, Babak
Darban, Ahmad Khodadadi
Mokhtari, Pozhhan
Darezereshki, Esmaeel
Yılmaz, Erol
Yılmaz, Elif

Metadata

Show full item record

Citation

Koohestani, B., Darban, A.K., Mokhtari, P., Darezereshki, E., Yılmaz, E. & Yılmaz, E. (2020). Influence of Hydrofluoric Acid Leaching and Roasting on Mineralogical Phase Transformation of Pyrite in Sulfidic Mine Tailings. Minerals, 10(6), 513. https://doi.org/10.3390/min10060513

Abstract

Under the oxidative roasting process, pyrite, as a major mineral in sulfidic mine tailings, can transform to iron oxides. Generated iron oxides, if exhibiting enough magnetic properties, can be recovered via magnetic separation resulting in partial mine tailings valorization. However, due to the presence of various minerals and sintering possibility, it is advantageous to remove impurities and increase the pyrite content of mine tailings prior to the roasting procedure. in this case, hydrofluoric acid that has no influence on pyrite can be used to leach most inorganic minerals, including aluminosilicates. Therefore, this study investigated and compared the influence of the roasting process with and without hydrofluoric acid leaching pretreatment on mineralogical phase transformation of pyrite and magnetic properties of thermally generated minerals. Several tests and analyses were performed to study mineralogical phase transformation, morphology, elemental composition, surface characterization, and magnetic properties. Results of this study indicated that without acid leaching pretreatment, pyrite was mainly transformed to hematite. However, via acid leaching, fluorine, as a more electronegative element over oxygen, entered the compound and neglected the role of oxygen in thermal oxidation, instead reducing sulfur content of pyrite to only form pyrrhotite.

Source

Minerals

Volume

10

Issue

6

URI

https://doi.org/10.3390/min10060513
https://hdl.handle.net/11436/1112

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.