• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Density functional theory investigation of oxidation intermediates on gold and gold-silver surfaces

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Şensoy, Mehmet Gökhan
Montemore, Matthew M.

Metadata

Show full item record

Citation

Şensoy, M.G. & Montemore, M.M. (2020). Density Functional Theory Investigation of Oxidation Intermediates on Gold and Gold-Silver Surfaces. Journal of Physical Chemistry C, 124(16), 8843-8853. https://doi.org/10.1021/acs.jpcc.0c01386

Abstract

Gold and gold-silver alloys can be active and selective oxidation catalysts. Previous work has suggested that O-2 dissociation occurs at bimetallic step sites on gold-silver alloys, but the site responsible for the rest of the reaction steps has not been studied. As a first step in gaining insight into this issue, we investigated the adsorption of oxygen and other oxidation intermediates on the (111) and (211) facets of gold-silver alloys using density functional theory. Oxygen and silver coverage effects were analyzed, and different model structures were compared. We also examined the energy barriers for the diffusion of atomic oxygen to gain insight into O migration and spillover. on (111) surfaces, O adsorption is much stronger at low O coverage (less than 0.22 ML), while on (211) surfaces O is strongly bound at both high and low O coverage. O diffusion across the step is faster than diffusion along the step. Ag stabilizes O, both when directly bound to it and when in an adjacent site. Ag also reduces repulsive O-O interactions at low O coverage. Our calculated reaction barriers for O-assisted CH3O dehydrogenation suggest that reaction is faster on steps than on terraces. Overall, our findings suggest that spillover of O from Ag-rich steps to Au-rich terraces does not occur and that oxidation reactions on gold-silver alloys occur on step sites. More specifically, oxidation likely occurs either on Ag-rich step sites or on Au-rich step sites that are adjacent to Ag-rich step sites.

Source

Journal of Physical Chemistry C

Volume

124

Issue

16

URI

https://doi.org/10.1021/acs.jpcc.0c01386
https://hdl.handle.net/11436/1162

Collections

  • FEF, Fizik Bölümü Koleksiyonu [355]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.