• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new evolutionary preprocessing approach for classification of mental arithmetic based EEG signals

Thumbnail

View/Open

Full Text / Tam Metin (1.722Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Ergün, Ebru
Aydemir, Önder

Metadata

Show full item record

Citation

Ergün, E. & Aydemir, Ö. (2020). A new evolutionary preprocessing approach for classification of mental arithmetic based EEG signals. Cognitive Neurodynamics, 14(5), 609-617. https://doi.org/10.1007/s11571-020-09592-8

Abstract

Brain computer interface systems decode brain activities from electroencephalogram (EEG) signals and translate the user's intentions into commands to control and/or communicate with augmentative or assistive devices without activating any muscle or peripheral nerve. in this paper, we aimed to improve the accuracy of these systems using improved EEG signal processing techniques through a novel evolutionary approach (fusion-based preprocessing method). This approach was inspired by chromosomal crossover, which is the transfer of genetic material between homologous chromosomes. in this study, the proposed fusion-based preprocessing method was applied to an open access dataset collected from 29 subjects. Then, features were extracted by the autoregressive model and classified by k-nearest neighbor classifier. We achieved classification accuracy (CA) ranging from 67.57 to 99.70% for the detection of binary mental arithmetic (MA) based EEG signals. in addition to obtaining an average CA of 88.71%, 93.10% of the subjects showed performance improvement using the fusion-based preprocessing method. Furthermore, we compared the proposed study with the common average reference (CAR) method and without applying any preprocessing method. the achieved results showed that the proposed method provided 3.91% and 2.75% better CA then the CAR and without applying any preprocessing method, respectively. the results also prove that the proposed evolutionary preprocessing approach has great potential to classify the EEG signals recorded during MA task.

Source

Cognitive Neurodynamics

Volume

14

Issue

5

URI

https://doi.org/10.1007/s11571-020-09592-8
https://hdl.handle.net/11436/1163

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.