• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimised performance of a thermally resistive PV glazing technology: An experimental validation

Thumbnail

View/Open

Full Text / Tam Metin (4.374Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2019

Author

Cüce, Erdem
Cüce, Pınar Mert

Metadata

Show full item record

Citation

Cüce, E. & Cüce, P.M. (2019). Optimised performance of a thermally resistive PV glazing technology: An experimental validation. Energy Reports, 5, 1185-1195. https://doi.org/10.1016/j.egyr.2019.08.046

Abstract

Thermally resistive PV glazing (TRPVG), which is a recently developed technology for low/zero carbon buildings, is in the centre of interest worldwide as a consequence of multifunctional benefits of this novel product such as remarkably better thermal insulation performance compared to conventional PV and other fenestration technologies in market, clean energy generation, self-cleaning, sound insulation, UV and IR absorption, etc. in this study, thermal insulation performance of TRPVG is numerically optimised through a well-known CFD software ANSYS FLUENT. Optimisation is based on determining the optimum inert gas (argon) thickness (tau) behind the amorphous silicon (a-Si) PV module which yields to minimum overall heat transfer coefficient (U-value) for the entire structure. For a typical case (tau = 16 mm), CFD results are compared with the experimental data derived from the standardised co-heating tests, and a good accordance is achieved. CFD results are also compared with the findings of thermal resistance approach, which assumes heat conduction takes place in the inert gas medium only. the results reveal that natural convection effects become notable for the values of tau over 10 mm. in other words, tau stands as a parameter that needs to be optimised for its values greater than 10 mm. For the typical TRPVG sample with tau = 16 mm, the overall U-value from the CFD research is determined to be 1.19 W/m(2)K, which is in good agreement with the experimental data. the optimised value of tau for the TRPVG structure introduced is determined to be 20 mm, which guarantees the minimum total heat transfer rate (Q) across the glazing and maximum temperature difference between internal and external glazing surfaces. (C) 2019 the Authors. Published by Elsevier Ltd.

Source

Energy Reports

Volume

5

URI

https://doi.org/10.1016/j.egyr.2019.08.046
https://hdl.handle.net/11436/1371

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Mimarlık Bölümü Koleksiyonu [82]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.