• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biomechanical evaluation of zygomatic implant use in patients with different buccal maxillary defect levels

Access

info:eu-repo/semantics/closedAccess

Date

2019

Author

Gümrükçü, Zeynep

Metadata

Show full item record

Citation

Gümrükçü Z. (2019). Biomechanical Evaluation of Zygomatic Implant Use in Patients With Different Buccal Maxillary Defect Levels. The International journal of oral & maxillofacial implants, 34(6), e115–e122. https://doi.org/10.11607/jomi.7696

Abstract

Purpose: the purpose of this study was to examine the biomechanics of zygomatic implants that were planned on an atrophic maxilla with five different buccal defect types and two different bone types. Materials and Methods: Three-dimensional models of zygomatic implants, human skulls, and maxillary prostheses were modeled with Solid Works software. Ten finite element models of skulls with five different buccal defect types and two different bone types were constructed to mimic various clinical scenarios. Two bilateral zygomatic implants and two anterior dental implants were inserted into all models. the data were processed by ANSYS Workbench software. Vertical occlusal (150-N) and masseteric (300-N) loads were simulated on a modeled prosthesis. the stresses on and deformations of the bones and implants were then observed and compared. Results: Maximum von Mises stress was found in skulls modeled with a type 4 defect and D-3 bone type. Minimal stress values were found in the skull model with a type 1 buccal bone defect and D-2 bone type. Displacement values were correlated with stress values. Conclusion: Cortical bone anchorage and bone type of zygomatic implants positively affect their biomechanics. Alveolar crest support has an effective role in the biomechanics of zygomatic implants.

Source

International Journal of Oral & Maxillofacial Implants

Volume

34

Issue

6

URI

https://doi.org/10.11607/jomi.7696
https://hdl.handle.net/11436/1373

Collections

  • DŞHF, Klinik Bilimler Bölümü Koleksiyonu [244]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.