• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effect of Total flowrate on the cooling performance of swirling coaxial impinging jets

Thumbnail

View/Open

Full Text / Tam Metin (1.258Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2019

Author

Markal, Burak

Metadata

Show full item record

Citation

Markal, B. (2019). The effect of Total flowrate on the cooling performance of swirling coaxial impinging jets. Heat and Mass Transfer, 55(11), 3275-3288. https://doi.org/10.1007/s00231-019-02653-7

Abstract

Thermal management ability of swirling coaxial confined impinging air jets (SCCIAJ) are experimentally studied for different total flowrate. the coaxial structure of the jet is provided by a nozzle which is a cylindrical material having an inner round flow passage and three circumferential helical flow passages. Experiments are conducted for various values of dimensionless nozzle-to-plate distance (H / D = 0.5, 1.0, 1.5 and 2.0) and total flowrate (40, 50 and 60 LPM (liter per minute)). During the experiments, flowrate ratio (Q*) and heating power are set to constant values of 0.75 and 18.2 W, respectively. It is revealed that both the heat transfer rate and radial uniformity are improved by increasing total flowrate, while increasing spacing between the nozzle outlet and the target plate adversely affects the magnitude of Nusselt numbers. in this context, the condition of Q(tot) = 60 LPM with H / D = 0.5 presents the optimum case for heat transfer. the results obtained are also compared with the ones of the classical circular jet (Q* = 0) depending on the temperature distribution of the impingement surface. It is concluded that swirling coaxial jets with appreciate working conditions can be used as an effective tool for electronics cooling.

Source

Heat and Mass Transfer

Volume

55

Issue

11

URI

https://doi.org/10.1007/s00231-019-02653-7
https://hdl.handle.net/11436/1377

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.