• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nano-scale single layer TiO2-based artificial synaptic device

Thumbnail

View/Open

Full Text / Tam Metin (1.966Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Gül, Fatih

Metadata

Show full item record

Citation

Gül, F. (2020). Nano-scale single layer TiO2-based artificial synaptic device. Applied Nanoscience, 10(2), 611-616. https://doi.org/10.1007/s13204-019-01179-y

Abstract

Synaptic nano-electronic devices for brain-inspired computing have become increasingly popular because of their biological neuron-like properties such as massive parallelism with lower power consumption. Metal oxide-based resistive switching memory devices for the implementation of synapses are of great interest due to their low cost, easy production and complementary metal-oxide semiconductors (CMOS) compatibility. This study presents a simple, single-layer nano-scale TiO2-based artificial synaptic device for neuromorphic applications. the structural properties of the proposed nano-scale TiO2-based device were confirmed via both X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). the bipolar resistive switching behavior of the device is shown by gradual increases in the low resistance (SET) state and gradual decreases in the high resistance (RESET) state. the synaptic characteristics of the device were resolved by applying voltage pulses. the typical potentiation and depression functions were obtained. Conforming to spike time dependent plasticity (STDP) was also achieved using synaptic weight changes. Homogeneous synaptic behaviors were associated with oxygen vacancies in the TiO2 layer, while abrupt changes in synaptic behavior were ascribed to filamentary transitions resulting from impurities in the metal oxide layer.

Source

Applied Nanoscience

Volume

10

Issue

2

URI

https://doi.org/10.1007/s13204-019-01179-y
https://hdl.handle.net/11436/1391

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [197]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.