• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)(3) (CTSSe) thin films using dip-coated Cu-Sn precursor

Thumbnail

View/Open

Full Text / Tam Metin (1.134Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2019

Author

Bayazıt, Tuğba
Olgar, Mehmet Ali
Küçükömeroğlu, Tayfur
Bacaksız, Emin
Tomakin, Murat

Metadata

Show full item record

Citation

Bayazıt, T., Olgar, M.A., Küçükömeroğlu, T., Bacaksız, E. & Tomakin, M. (2019). Growth and characterization of Cu2SnS3 (CTS), Cu2SnSe3 (CTSe), and Cu2Sn(S,Se)(3) (CTSSe) thin films using dip-coated Cu-Sn precursor. Journal of Materials Science-Materials in Electronics, 30(13), 12612-12618. https://doi.org/10.1007/s10854-019-01622-4

Abstract

Ternary compounds Cu2SnS3, Cu2SnSe3 and Cu2Sn(S,Se)(3) thin films used in thin film solar cell applications were prepared at the first time by such a two-stage process that includes dip-coating of Cu-Sn precursors as distinct from vacuum-based fabrication methods followed by sulfurization/selenization of prepared precursors via rapid thermal processing at 550 degrees C. All prepared thin films revealed Cu-poor composition. X-ray diffraction and Raman spectra of the samples showed that Cu2SnS3 and Cu2SnSe3 thin films had a monoclinic structure as a dominant phase and additionally some secondary phases such as tetragonal Cu2SnS3 and orthorhombic Cu3SnS4. However, the tetragonal and orthorhombic phases had more impact on Cu2Sn(SSe)(3) thin film. Compact, dense, and small grained surface morphologies were obtained for the Cu2SnS3 and Cu2Sn(SSe)(3) thin films, while the surface morphology of the Cu2SnSe3 thin film had larger grained surface morphology. the Cu2SnS3 thin film demonstrated higher transmittance (similar to 65%) and two different absorption edges that indicates formation of two band gap energy. Band gap values of Cu2SnS3, Cu2Sn(SSe)(3) and Cu2SnSe3 thin films were found 0.97eV (and 1.51eV), 1.25eV and 0.78eV, respectively. the lowest resistivity (2.48x10(-1)Omega cm) and the highest carrier concentration (1.64x10(19)cm(-3)) values were observed for Cu2Sn(SSe)(3) thin film.

Source

Journal of Materials Science-Materials in Electronics

Volume

30

Issue

13

URI

https://doi.org/10.1007/s10854-019-01622-4
https://hdl.handle.net/11436/1498

Collections

  • FEF, Fizik Bölümü Koleksiyonu [355]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.