• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of plastic antineutrino detector designs in the context of near field reactor monitoring

Thumbnail

View/Open

Full Text / Tam Metin (2.013Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2019

Author

Kandemir, Mustafa
Çakır, Altan

Metadata

Show full item record

Citation

Kandemir, M. & Çakır, A. (2019). Comparison of plastic antineutrino detector designs in the context of near field reactor monitoring. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 927, 353-361.

Abstract

We compare existing segmented plastic antineutrino detectors with our new geometrically improved design for antineutrino detection and light collection efficiency. the purpose of this study is to determine the most suitable design style for remote reactor monitoring in the context of nuclear safeguards. Using Monte Carlo based GEANT4 simulation package, we perform detector simulation based on two prominent experiments: Plastic antineutrino detector array (Panda) and Core monitoring by reactor antineutrino detector (Cormorad). in addition to these two well-known designs, another concept, the Panda2, can be obtained by making a small variation of Panda detector, is also considered in the simulation. the results show that the light collection efficiency of the Cormorad is substantially less with respect to the other two detectors while the highest antineutrino detection efficiency is achieved with the Cormorad and Panda2. Furthermore, as an alternative to these design choices, which are composed of an array of identical rectangular-shaped modules, we propose to combine regular hexagonal-shaped modules which minimizes the surface area of the whole detector and consequently reduces the number of optical readout channels considerably. With this approach, it is possible to obtain a detector configuration with a slightly higher detection efficiency with respect to the Panda design and a better energy resolution detector compared to the Cormorad design.

Source

Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment

Volume

927

URI

https://doi.org/10.1016/j.nima.2019.02.055
https://hdl.handle.net/11436/1527

Collections

  • FEF, Fizik Bölümü Koleksiyonu [355]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.