• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bearing capacity and slope stability assessment of rock masses at the Subasi viaduct site, NE, Turkey

Thumbnail

View/Open

Full Text / Tam Metin (16.63Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2018

Author

Kaya, Ayberk
Bulut, Fikri
Dağ, Serhat

Metadata

Show full item record

Citation

Kaya, A., Bulut, F. & Dağ, S. (2018). Bearing capacity and slope stability assessment of rock masses at the Subasi viaduct site, NE, Turkey. Arabian Journal of Geosciences, 11(8), 162. https://doi.org/10.1007/s12517-018-3477-7

Abstract

This study investigates the bearing capacity of rock masses and stability of slopes at the Subasi viaduct site which is a part of the improvement project of the Artvin-Hopa government highway between KM 6 + 500 and 13 + 787 in NE Turkey. the geotechnical studies were performed in three stages. Firstly, the bearing capacity of moderately weathered andesitic tuff was evaluated using the empirical equations. Secondly, the major principal stress and vertical displacement due to the viaduct and traffic loadings at the level of foundations were determined by the finite element method (FEM). the vertical displacement value and comparison of bearing capacity and major principal stress show that any problem is not expected at the viaduct site in terms of the bearing capacity. Finally, the stability of slopes at the viaduct site was investigated using kinematic, limit equilibrium, and finite element method-based shear strength reduction analyses methods. It was concluded that no discontinuity controlled failures at the slopes are expected. However, a circular failure is possible to occur at the face slope excavated in highly weathered andesitic tuff. After support application, the long-term stabilization of face slope has been achieved. Consequently, it is suggested that the empirical, analytical, and numerical methods should be combined for a more reliable construction design.

Source

Arabian Journal of Geosciences

Volume

11

Issue

8

URI

https://doi.org/10.1007/s12517-018-3477-7
https://hdl.handle.net/11436/1846

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.