• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Human-animal recognition in camera trap images

Thumbnail

View/Open

Full Text / Tam Metin (1.282Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2018

Author

Şimşek, Emrah
Özyer, Barış
Bayındır, Levent
Özyer, Gülşah Tümüklü

Metadata

Show full item record

Citation

Şimşek, E., Özyer, B., Bayındır, L. & Özyer, G.T. (2018). Human-Animal Recognition in Camera Trap Images. 2018 26Th Signal Processing and Communications Applications Conference (Siu). http://doi.org/10.1109/SIU.2018.8404700

Abstract

Camera trap is an image sensor that is widely used in monitoring biodiversity, identifying and tracking species in natural life. in this study, we investigate human-animal distinction in image dataset obtained from camera traps for the purpose of smuggling detection and prevention. the dataset includes human and animal images capturing during both night and day light hours. in the preprocessing stage, the objects are firstly cropped from the background. Then Scale Invariant Feature Transform (SIFT), Color Histogram, Local Binary Pattern (LBP) and Histogram of Oriented Gradient (HOG) descriptors are extracted from these cropped images. Support Vector Machine (SVM), k-NN and random forest algorithms are used to classify the data in two class as human and animal. the experiments are conducted on different type of dataset such that original dataset are separated by images captured in night and day light. the other one is obtainted by dividing dataset randomly as equal number of human and animal images. the experimental results show that color histogram features on random forest algorithm give always best accuracy results for all dataset. Moreover, the images captured in night give more accuracy than the images captured in day light for all classification algorithms.

Source

2018 26Th Signal Processing and Communications Applications Conference (Siu)

URI

https://hdl.handle.net/11436/1991
http://doi.org/10.1109/SIU.2018.8404700

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.