• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize

Thumbnail

View/Open

Full Text / Tam Metin (555.7Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2017

Author

Pehlivan, Necla
Yeşilyurt, Abdullah Muhammed
Durmuş, Nuran
Karaoğlu, Şengül Alpay

Metadata

Show full item record

Citation

Pehlivan, N., Yeşilyurt, A.M., Durmuş, N. & Karaoğlu, Ş.A. (2017). Trichoderma lixii ID11D seed biopriming mitigates dose dependent salt toxicity in maize. Acta Physiologiae Plantarum, 39(3), 79. https://doi.org/10.1007/s11738-017-2375-z

Abstract

Certain number of commercial products has been developed to grow stress resistant plants for the sustainability of agriculture in current era with full of energy dependency and hunger besides global warming. Given the risk of these products on the microbial environment in the rhizosphere and food security of mankind due to the accumulated chemical pollution through the food web, organic fungal plant growth promoting agents might be used. Hence, effects of Trichoderma lixii ID11D (TXD), our local fungal isolate on Zea mays L. cv. Samada 07 as a seed biopriming agent was investigated under dose dependent NaCl stress in this study. Fungus was characterized based on ITS (internal transcribed spacer) regions via clustering approach after isolated from tea plantation area. the higher the NaCl concentration, the more effective the TXD was observed. Improved electron transport rate (ETR), maximum quantum efficiency of PS II (Fv/Fm), the effective quantum yield of PS2 (Phi PS2), photochemical quenching (qP) and decreased non-photochemical quenching (NPQ) was detected in TXD primed plants after NaCl expose. TXD seed biopriming increased the lengths, fresh and dry weights of root/shoots and decreased the lipid peroxidation (MDA) remarkably. Non-enzymatic pathway was found to be more effective than enzymatic one for seed bioprimed plants proven by higher RWC, soluble protein, proline, chlorophyll, carotenoid, and less H2O2 and MDA levels under each dose of NaCl. Detected phenotypic and biochemical improvements pave the way of the potential usage of the formulated fungus biopreperations as a pre-harvest agent in agriculturally important cereals in the future and going beyond lab-based level.

Source

Acta Physiologiae Plantarum

Volume

39

Issue

3

URI

https://doi.org/10.1007/s11738-017-2375-z
https://hdl.handle.net/11436/2175

Collections

  • FEF, Biyoloji Bölümü Koleksiyonu [588]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.