• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders

Thumbnail

View/Open

Full Text / Tam Metin (4.384Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2016

Author

Özen Karslı, Sevgi
Goncuoğlu, Mehmet Cemal
Liguori, Barbara
de Gennaro, Bruno
Cappelletti, Piergiulio
Gatta, G. Diego
Lucolano, Fabio
Colella, Carmine

Metadata

Show full item record

Citation

Ozen, S., Goncuoglu, M.C., Liguori, B., de Gennaro, B., Cappelletti, P., Gatta, G.D., Lucolano, F. & Colella, C. (2016). A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Construction and Building Materials, 105, 46-61. https://doi.org/10.1016/j.conbuildmat.2015.12.055

Abstract

The pozzolanic action played by five natural zeolite-rich materials (three clinoptilolite- and one each mordenite- and analcime-bearing rocks) coming from Turkey, has been examined, evaluating also the influence of various chemical-physical parameters, such as grain size of the zeolitic materials and nature of the cation present as extra-framework component of the structure. Pozzolan activity has been estimated by the official test of the European Standards and by thermogravimetry, finding a good accordance between the two procedures. Clinoptilolite-rich rocks gave the best results, but performance turned out to depend on the specific surface area and pre-enrichment in a potassium form. Experimental data analysis demonstrated that the pozzolanic reaction is kinetically controlled by the diffusion of reactants through a layer of dense reaction products. Experimental blended cements with the five zeolite-rich rocks were also prepared and the compressive strengths measured as a function of the curing time. the effectiveness of the pozzolanic action was monitored by XRD and FTIR analyses. An accurate microstructural study of the hardened pastes was also carried out and point analysis performed, pointing out that the zeolite-lime interaction is characterized by two stages: initially zeolite subtracts calcium from the environment by cation exchange, then it acts as a true pozzolan as soon as its structure breaks down. (C) 2015 Elsevier Ltd. All rights reserved.

Source

Construction and Building Materials

Volume

105

URI

https://doi.org/10.1016/j.conbuildmat.2015.12.055
https://hdl.handle.net/11436/2576

Collections

  • Jeoloji Mühendisliği Bölümü Koleksiyonu [78]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.