• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Olfaction recognition by EEG analysis using wavelet transform features

Thumbnail

View/Open

Full Text / Tam Metin (517.6Kb)

Access

info:eu-repo/semantics/openAccess

Date

2016

Author

Yavuz, Ebru
Aydemir, Önder

Metadata

Show full item record

Citation

Yavuz, E., Aydemir, O. (2016). Olfaction recognition by EEG analysis using wavelet transform features. Proceedings of the 2016 International Symposium on Innovations in Intelligent Systems and Applications (Inista),

Abstract

The responses of the brain into different information coming from sense organs could be analyzed by various kinds of measuring techniques. Among the existing techniques, Electroencephalography (EEG) is widely used because of its low setup costs, easy implementation and noninvasive nature. the response of the human brain to olfaction has been analyzed in recent years. Particularly, it has not been exactly proved how the human brain gives response to different odors because of the limited kind of odor usage and different kinds of proposed methods. the present study demonstrates the effect of lotus flower and cheese odors on EEG signals, which were recorded from 5 healthy subjects at the eyes open and eyes closed conditions. in order to show the effectiveness of the proposed method, we categorized the EEG trials into two classes between lotus flower and cheese odors. in order to represent the EEG trials, we extracted features by using Wavelet Transform coefficients. As wavelet function, we tested five kinds of wavelets including Morlet, Mexican, Meyer, Coiflet and Daubechies on delta, theta, alpha, beta, whole band of the EEG signal. the extracted features were classified by k-nearest neighbor algorithm. the achieved results showed that among the tested wavelet functions, Mexican wavelet has a great potential to represent the EEG signals which were recorded during smelling of lotus flower and cheese odors under the eyes open and eyes closed conditions. Moreover, we achieved with Mexican 98.29% and 94.08% average classification accuracy rates on the eyes open and closed conditions, respectively.

Source

Proceedings of the 2016 International Symposium on Innovations in Intelligent Systems and Applications (Inista)

URI

https://hdl.handle.net/11436/2646

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [199]
  • Scopus İndeksli Yayınlar Koleksiyonu [6026]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.