• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characteristic evaluation on spray-deposited WFTO thin films as a function of W doping ratio

Thumbnail

View/Open

Full Text / Tam Metin (3.015Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2014

Author

Turgut, Güven
Keskenler, Eyüp Fahri
Aydın, Serdar
Tatar, Demet
Sönmez, Erdal
Doğan, Seydi
Düzgün, Bahattin

Metadata

Show full item record

Citation

Turgut, G., Keskenler, E.F., Aydin, S., Tatar, D., Sonmez, E., Dogan, S., Duzgun, B. (2014). Characteristic evaluation on spray-deposited WFTO thin films as a function of W doping ratio. Rare Metals, 33(4), 433-441. https://doi.org/10.1007/s12598-013-0055-8

Abstract

In this work, F and F + W simultaneously doped SnO2 highly transparent conducting thin films were deposited on glass substrates at (500 +/- A 5) A degrees C temperature by the spray pyrolysis method. Microstructural, morphological, electrical and optical properties of FTO films were investigated as a function of tungsten (W) doping, in the range from 0 to 5 at%. X-ray diffraction patterns show that the films exhibit a tetragonal cassiterite structure and (200) preferential orientation of FTO film, and the relative strength of these peaks changes with altering the W doping ratio. the preferred growth of (211) changed to (200) plane with 2 at% W doping level and 3 at% W-doped film had (200) orientation and with further doping, this changed to (110) orientation. the scanning electron microscopy and atomic force microscopy images of the films indicate that the films are made up of dense small particles of a pyramidal shape and have a smooth surface. It was observed that the surface morphology of the films did not change much when the W element was inserted to the FTO structure. It was found that the sheet resistance values of the films varied with W doping ratio, and 2 at% W-doped FTO thin film exhibited the lowest values of sheet resistance (1.12 a"broken vertical bar). Also, the highest figure of merit, infrared reflectivity and optical band gap values were calculated for 2 at% W-doped FTO film as 50.9 x 10(-2) a"broken vertical bar(-1), 98.82 % and 4.13 eV, respectively. These results make the films an effective candidate for usage in many optoelectronic applications and photo-thermal conversion of solar energy.

Source

Rare Metals

Volume

33

Issue

4

URI

https://doi.org/10.1007/s12598-013-0055-8
https://hdl.handle.net/11436/3087

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [199]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.