• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of alternating-current losses in two-layer superconducting cables constructed by shell-type and solid-core cylindrical wires

View/Open

Tam Metin / Full Text (416.5Kb)

Access

info:eu-repo/semantics/openAccess

Date

2014

Author

İnanır, Fedai
Çiçek, Ahmet

Metadata

Show full item record

Citation

Inanir, F., Cicek, A. (2014). Comparison of Alternating-Current Losses in Two-Layer Superconducting Cables Constructed by Shell-Type and Solid-Core Cylindrical Wires. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Exergy, Energy, and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-04681-5_39

Abstract

Alternating-current losses in two-layer power transmission cables of type-II superconducting wires with cylindrical geometry are numerically investigated with regard to wire cross section. Losses in shell-type and solid-core superconducting wires are calculated through the Finite Element Method for an applied alternating current with 50 Hz frequency. Each cable layer is composed of 20 wires which have 1.0 mm radii, while the thickness of shell-type wires is 0.1 mm. The two wire layers are wound over a copper core such that the inner and outer layer radii are 20.0 and 25.0 mm, respectively. Alternating-current losses at small applied current amplitudes in shell-type wires are three-times smaller than in solid-core wires, where the discrepancy diminishes for high current amplitudes above 90 % of the critical current. Besides, losses in both configurations are considerably higher in outer-layer wires for current amplitudes less than half the critical current, while they converge at higher amplitudes. The reason for smaller losses in shell-type wires at low applied current amplitudes is associated to the fact that current distribution is more homogeneous, whereas magnetic field lines penetrate into the hollow core of these wires. © Springer International Publishing Switzerland 2014.

Source

Progress in Exergy, Energy, and the Environment

URI

https://doi.org/10.1007/978-3-319-04681-5_39
https://hdl.handle.net/11436/4038

Collections

  • FEF, Fizik Bölümü Koleksiyonu [354]
  • Scopus İndeksli Yayınlar Koleksiyonu [5917]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.