• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exergetic analysis of a vertical ground-source heat pump system with wall heating/cooling

View/Open

Tam Metin / Full Text (382.5Kb)

Access

info:eu-repo/semantics/openAccess

Date

2014

Author

Akbulut, Uğur
Açıkgöz, Özgen
Kincay, Olcay
Karakoc, T.Hikmet

Metadata

Show full item record

Citation

Akbulut, U., Acikgoz, O., Kincay, O., Karakoc, T.H. (2014). Exergetic Analysis of a Vertical Ground-Source Heat Pump System with Wall Heating/Cooling. In: Dincer, I., Midilli, A., Kucuk, H. (eds) Progress in Exergy, Energy, and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-04681-5_26

Abstract

The present study deals with an exergetic analysis and assessment of a Vertical Ground-Source Heat Pump System (VGSHP) combined with a Wall Heating System (WHCS) in a building. This study is an experimental investigation of a real building’s heating system. The system is located at Yildiz Renewable Energy House (YREH) in Yildiz Technical University and fulfills the heating demand of YREH and a living room of the neighboring dormitory. In order to validate an exergetic model, the system is divided into three subsystems: (1) the ground coupling circuit, (2) the refrigerant circuit, and (3) the WHS circuit. The schematic diagram of the constructed experimental system is given in Fig. 26.1. Exergetic model is obtained by applying mass, energy, and exergy equations for each system component. YREH has four rooms, each has 8 m2 floor area, and the neighboring dormitory has a 50 m2 living room. In this study three rooms of YREH and the living room have been heated during heating season. The heating season was assumed to be between 1 January and 31 March. As average results on the heating season, 6.509 kW heat energy was extracted from ground and 5.799 kW was used in the WHS. In this process electrical energy consumption of system components are as follows: compressor 1.711 kW, ground heat exchanger pump 0.092 kW, accumulator tank circulation pump 0.114 kW, andWHS circulation pump 0.108 kW. For heating season, calculated overall system efficiency was 67.36 % while GSHP unit’s efficiency was 85 %. In addition, overall system COP was 2.76, while GSHP unit’s COP was 4.13. Total exergy destruction was found 1.759 kWand largest exergy destruction has occurred in the compressor as 0.714 kW. The exergy efficiency values for the individual components of the system have been found ranging from 58.3 to 98.4 % according to P/F concept. It is expected that the model would be beneficial for evaluating low exergy heating systems which use ground source as a renewable energy. © Springer International Publishing Switzerland 2014.

Source

Progress in Exergy, Energy, and the Environment

URI

https://doi.org/10.1007/978-3-319-04681-5_26
https://hdl.handle.net/11436/4060

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.