• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-frequency approach to ECG classification of myocardial infarction

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Kayikcioglu, İ.
Akdeniz, F.
Köse, C.
Kayikcioglu, T.

Metadata

Show full item record

Abstract

Electrocardiogram (ECG) analysis is one of the most important techniques to classify myocardial infarction. It is possible to diagnose that the patient may have a heart attack with ST segment elevation or depression in the ECG recordings taken before patient has a myocardial infarction. We propose a method to classify ST segment using time-frequency distribution based features from multi-lead ECG signals. In contrast to many studies in the literature, the proposed method is based on four-class classifcation method and is tested on a large dataset consisting of three different databases, namely MIT-BIH Arrhythmia database, European ST-T database and Long-Term ST database. Among the classification algorithms, the weighted k-NN algorithm achieved the best average performance with accuracy of 94.23%, sensitivity of 95.72% and specificity of 98.15% using Choi-Williams time-frequency distribution features. Meanwhile, the speed of the proposed algorithm is suitable for telemedicine systems. © 2020 Elsevier Ltd

Source

Computers and Electrical Engineering

Volume

84

URI

https://doi.org/10.1016/j.compeleceng.2020.106621
https://hdl.handle.net/11436/4489

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [5931]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.