• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MARS: Machine learning based Adaptable and Robust Network Management for Software-defined Networks

View/Open

Tam Metin / Full Text (494.5Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2020

Author

Kandah, Farah
Özçelik, İlker
Huber, Brennan

Metadata

Show full item record

Citation

Kandah, F., Özçelik, İ. & Huber, B. (2020). MARS: Machine learning based Adaptable and Robust Network Management for Software-defined Networks. 2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020, 586-591, 9031241. https://doi.org/10.1109/CCWC47524.2020.9031241

Abstract

Traditional networks were initially designed to scale fast, but in turn are harder to monitor and manage. The rise in the Internet of Things (IoT) has caused an increase in the number of mobile nodes and thus the topology changes constantly. This compels researchers to explore more efficient methods to monitor and manage the network. Software Defined Networking (SDN) have become the primary focus of the research community due to the flexibility it enables by the separation of the data and the control plane. However, the centralized nature of SDN causes a scalability and a single point of failure problems. To combat this problem, we propose an adaptable and robust network management approach using machine learning while considering the control plane architecture for software-defined networks. Our system aims to enhance the network resource utilization and increase the SDN's scalability by using multiple controllers and assigning the switches among them autonomously, based on network traffic patterns. © 2020 IEEE.

Source

2020 10th Annual Computing and Communication Workshop and Conference, CCWC 2020

URI

https://doi.org/10.1109/CCWC47524.2020.9031241
https://hdl.handle.net/11436/4521

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.