• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The magnetothermal characterization of Ni-Cu-Mn-Sn alloy

Thumbnail

View/Open

Full Text / Tam Metin (2.712Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Yüzüak, Ercüment

Metadata

Show full item record

Citation

Yuzuak, E. (2021). The magnetothermal characterization of Ni-Cu-Mn-Sn alloy. Materials Research Bulletin, 142, 111398. https://doi.org/10.1016/j.materresbull.2021.111398

Abstract

The substantial study presents the structural and magnetic phase transitions in the Ni46.8Cu2.5Mn36.5Sn14.3 alloy through AC susceptibility measurement and heat capacity measurement in a zero magnetic field. To check whether it was achieved, the homogeneous distribution in the alloy, secondary electron, and backscattered detector images from scanning electron microscopy measurements are performed. The bulk alloy has a structural phase transition (Martensitic transition) which is around 200 K and a magnetic phase transition in the vicinity of room temperature upon cooling. The martensitic transition temperatures are martensite start (Ms = 195 K) and martensite finish (Mf = 181 K) upon a cooling cycle; austenite start (As = 199 K) and austenite finish (Af = 213 K) upon a heating cycle, obtained from the temperature dependence of the AC susceptibility. Above the TC, the alloy appears to comply with the Curie-Weiss law, and paramagnetic susceptibility ensures the value of the effective paramagnetic moment (mu eff) of 2.1 mu B and the paramagnetic Curie temperature (theta P) of 297 K. In the Martensite region, the temperature of the second magnetic phase transition is visible between 100 and 175 K, which can be manipulated to be related to Martensite Curie temperature. The electronic Sommerfeld (gamma T) and phonon coefficient (beta T3) obtained from heat capacity measurements are found from fit function as 12.47 (+/- 0.09) mJ.mol-1. K-2 and 2.96 x 10-4 J.mol- 1.K-4 but these values are higher than Ni-Mn-Sn and smaller than Ni-Mn-Ga alloys. The assumption is that the inconsistency in the results realized by the addition of Cu may come from hybridization or ferromagnetic band splitting. The values of the density of states at Fermi level N (EF) and Debye temperature are calculated with the heat capacity data as 1.31 state/eV.atom and 297 +/- 2 K, respectively. Finally, the indirect adiabatic temperature varies by 2 K for an applied magnetic field of 1 T in the combined magnetic and heat capacity measurements. The findings reported via the study are carried out to support the literature and commensurate with similar findings.

Source

Materials Research Bulletin

Volume

142

URI

https://doi.org/10.1016/j.materresbull.2021.111398
https://hdl.handle.net/11436/6513

Collections

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [117]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.