• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron

Access

info:eu-repo/semantics/closedAccess

Date

2021

Author

Yaylacı, Murat
Yaylı, Müjgen
Yaylacı, Ecren Uzun
Ölmez, Hasan
Birinci, Ahmet

Metadata

Show full item record

Citation

Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. & Birinci, A. (2021). Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron. Structural Engineering and Mechanics, 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585

Abstract

This paper presents a comparative study of analytical method, finite element method (FEM) and Multilayer Perceptron (MLP) for analysis of a contact problem. The problem consists of a functionally graded (FG) layer resting on a half plane and pressed with distributed load from the top. Firstly, analytical solution of the problem is obtained by using theory of elasticity and integral transform techniques. The problem is reduced a system of integral equation in which the contact pressure are unknown functions. The numerical solution of the integral equation was carried out with Gauss-Jacobi integration formulation. Secondly, finite element model of the problem is constituted using ANSYS software and the two-dimensional analysis of the problem is carried out. The results show that contact areas and the contact stresses obtained from FEM provide boundary conditions of the problem as well as analytical results. Thirdly, the contact problem has been extended based on the MLP. The MLP with three-layer was used to calculate the contact distances. Material properties and loading states were created by giving examples of different values were used at the training and test stages of MLP. Program code was rewritten in C++. As a result, average deviation values such as 0.375 and 1.465 was obtained for FEM and MLP respectively. The contact areas and contact stresses obtained from FEM and MLP are very close to results obtained from analytical method. Finally, this study provides evidence that there is a good agreement between three methods and the stiffness parameters has an important effect on the contact stresses and contact areas.

Source

Structural Engineering and Mechanics

Volume

78

Issue

5

URI

https://doi.org/10.12989/sem.2021.78.5.585
https://hdl.handle.net/11436/6658

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6011]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.