• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dexmedetomidine attenuates pneumocyte apoptosis and inflammation induced by aortic ischemia-reperfusion injury

Thumbnail

View/Open

Full Text / Tam Metin (5.008Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Hemşinli, Doğuş
Tümkaya, Levent
Ergene, Şaban
Karakişi, Sedat Ozan
Mercantepe, Tolga
Yılmaz, Adnan

Metadata

Show full item record

Citation

Hemsinli, D., Tumkaya, L., Ergene, S., Karakisi, S. O., Mercantepe, T., & Yilmaz, A. (2022). Dexmedetomidine attenuates pneumocyte apoptosis and inflammation induced by aortic ischemia-reperfusion injury. Clinical and experimental hypertension (New York, N.Y. : 1993), 44(7), 595–600. https://doi.org/10.1080/10641963.2022.2093893

Abstract

Objective Despite significant improvements in interventional vascular aneurysm repair procedures and intensive care patient management, there has been no significant decrease in mortality due to ruptured abdominal aortic aneurysm. Oxidative stress is known to play a key role in secondary organ damage due to infrarenal aortic clamping. The aim of this study was to examine the potential protective effect of the alpha-2 adrenergic receptor agonist dexmedetomidine (DMT) on aortic occlusion-induced lung injury. Methods Thirty Sprague Dawley rats were allocated into control, ischemia-reperfusion (IR), and IR+DMT groups randomly. Vascular clamps were attached to the abdominal aorta in the IR and IR+DMT groups. Two-hour reperfusion was established 1 h after ischemia. The IR+DMT group received a single intraperitoneal 100 mu g dose of DMT 30 min before infrarenal abdominal aortic clamping. Results IR due to aortic occlusion led to apoptosis, widespread inflammation, alveolar septal wall thickening due to bleeding and vascular congestion were observed in both types I and II pneumocytes. Malondialdehyde levels increased while glutathione decreased. However, DMT was found to lower apoptotic pneumocytes, alveolar-septal thickness, hemorrhage, vascular congestion, and malondialdehyde levels, while glutathione levels in lung tissue increased. Conclusions This study is the first to address the effects of DMT on the lung in a ruptured abdominal aortic aneurysm model. Our findings suggest that the alpha-2 adrenergic receptor agonist DMT reduces oxidative stress and apoptosis, thus protecting against aortic occlusion-induced pulmonary injury.

Source

Clinical and Experimental Hypertension

Volume

44

Issue

7

URI

https://doi.org/10.1080/10641963.2022.2093893
https://hdl.handle.net/11436/6830

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • TF, Cerrahi Tıp Bilimleri Bölümü Koleksiyonu [1216]
  • TF, Temel Tıp Bilimleri Bölümü Koleksiyonu [691]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.