• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Donor binding energies in single ZnCdO/ZnO quantum well

Thumbnail

View/Open

Full Text / Tam Metin (659.2Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Çakır, Raşit

Metadata

Show full item record

Citation

Çakır, R. (2022). Donor binding energies in single ZnCdO/ZnO quantum well. Thin Solid Films, 755. https://doi.org/10.1016/j.tsf.2022.139328

Abstract

The single wurtzite Zn1-xCdxO/ZnO quantum well structure in polar c-direction is studied and the binding energies of an impurity donor atom are obtained. The Schrodinger and Poisson equations are solved self consistently using finite difference method within the effective mass and envelope function approximations. Then, a hydrogenic type of wave function is assumed to represent the impurity, and donor binding energies are obtained using variational approach. The binding energies of the 1s and 2p(+/-) states and the transition energy between them are obtained as functions well width, Cd concentration and donor position in the well. Also, an external magnetic field along the growth direction up to 10 T is applied to compute the changes in the binding energies. The builtin electric field causes an asymmetric band profile and a triangular well structure, and makes the binding energy curves lose symmetry. The binding energy increases with the donor position as the donor gets close to the wave function penetrated mostly inside the barrier. The built-in electric field is 2.5 MV /cm in a 20- angstrom well with the Cd concentration of x = 0.1, and the transition energy is 27.7 meV (6.7 THz) when the donor is at the well barrier interface close to the electron wave function, but it is 15.7 meV (3.8 THz) when the donor is at the well center. Also, the Zeeman splitting between the 2p(-) and 2p(+) states is 4.64 meV at 10 T independent from the donor position.

Source

Thin Solid Films

Volume

755

URI

https://doi.org/10.1016/j.tsf.2022.139328
https://hdl.handle.net/11436/6855

Collections

  • FEF, Fizik Bölümü Koleksiyonu [355]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.