• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping

Thumbnail

Göster/Aç

Full Text / Tam Metin (12.68Mb)

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2022

Yazar

Öztürk, Orkun Burak
Başar, Ersan

Üst veri

Tüm öğe kaydını göster

Künye

Ozturk, O.B. & Basar, E. (2022). Multiple linear regression analysis and artificial neural networks based decision support system for energy efficiency in shipping. Ocean Engineering, 243, 110209. https://doi.org/10.1016/j.oceaneng.2021.110209

Özet

The studies of energy efficiency in shipping have grown in importance in light of recent air pollution developments. Moreover, the Fourth Greenhouse Gas (GHG) Study of the International Maritime Organization (IMO) has also revealed that energy consumption and emissions from maritime transportation still continue to increase considerably. This study aims to reduce air pollution from ships and operational costs in shipping by implementing efficiency measures of voyage management. The methodological approach taken in this study is based on decision support systems (DSS). DSSs have been established with the fuel oil consumption (FOC) prediction methods of Multiple Linear Regression Analysis (MLRA) and Artificial Neural Networks (ANN). The FOC prediction models are created with voyage reports data which includes revolutions per minute (RPM), pitch, mean draft, trim, weather condition, and FOC variables being gathered from voyage reports of 19 container ships. Compatibility values of FOC prediction models are at satisfactory levels (76-90%). The developed models provide a comparison with the performances of MLRA and ANN methods for the prediction of FOC as well as revealing the influences of RPM, trim, ballast, and weather routing optimization techniques on energy efficiency. The results suggest that energy savings may be at 32-37%, 6.5-8%, 7-12%, and 6-8% provided with the optimization of RPM, trim, weather routing, and ballast, respectively.

Kaynak

Ocean Engineering

Cilt

243

Bağlantı

https://doi.org/10.1016/j.oceaneng.2021.110209
https://hdl.handle.net/11436/6971

Koleksiyonlar

  • DNZF, Deniz Ulaştırma İşletme Mühendisliği Bölümü Koleksiyonu [103]
  • Scopus İndeksli Yayınlar Koleksiyonu [6032]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.