• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

UV coated acrylics as a substitute for generic glazing in buildings of Indian climatic conditions: Prospective for energy savings, CO2 abatement, and visual acceptability

Thumbnail

View/Open

Full Text / Tam Metin (5.285Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Maduru, Venkata Ramana
Shaik, Saboor
Cüce, Erdem
Afzal, Asif
Panchal, Hitesh
Cüce, Pınar Mert

Metadata

Show full item record

Citation

Maduru, V.R., Shaik, S., Cuce, E., Afzal, A., Panchal, H. & Cuce, P.M. (2022). UV coated acrylics as a substitute for generic glazing in buildings of Indian climatic conditions: Prospective for energy savings, CO2 abatement, and visual acceptability. Energy and Buildings, 268, 112231. https://doi.org/10.1016/j.enbuild.2022.112231

Abstract

The generic clear glass used in the existing buildings has the limitations such as high heat gain/loss, glare, and poor thermal performance. Substitution for the existing building conventional glazing systems should be given full consideration in sustainable development due to its significant impact on energy consumption and greenhouse gas (GHG) emissions. The study explores various UV-coated acrylics as a substitute for generic clear glass. Thermo-optical characterization was performed to calculate UV-coated acrylics' un-steady state thermal transmittance and solar-optical properties. A thermo-economic analysis of UV-coated acrylics was undertaken in a four-floor high glazed building in two different Indian climates (hot and temperate) to assess the reductions in heat gains, corresponding energy savings, and carbon emission mitigations. The findings revealed that UV-coated acrylics' heat gain/loss inside the buildings was reduced compared to the generic clear glass. Compared to generic clear glass, UV-coated acrylics reduced heat gain by 25.5% and 23.5% in hot and temperate climes, respectively. Reduced heat gains resulted in energy savings for cooling and heating requirements, resulting in annual cost savings of 8667 $/year for a temperate climate and 5974 $/year for a hot climate, respectively. Lower energy requirements for cooling and heating resulted in carbon reductions of 88.7 and 56.2 tCO2/year for temperate and hot climates, respectively. Energy Plus simulations have been used to validate the mathematical model results and evaluate daylight infiltration in buildings with UV-coated acrylics at various brightness levels. UV-coated acrylics' measured daylight ingress metrics and color rendering metrics ensure good visual acceptability in building interiors. (C) 2022 Elsevier B.V. All rights reserved.

Source

Energy and Buildings

Volume

268

URI

https://doi.org/10.1016/j.enbuild.2022.112231
https://hdl.handle.net/11436/6975

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [335]
  • Mimarlık Bölümü Koleksiyonu [83]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.