• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, biological evaluation and in silico studies of new pyrazoline derivatives bearing benzo[d]thiazol-2(3H)-one moiety as potential urease inhibitors

Thumbnail

View/Open

Full Text / Tam Metin (4.076Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Tok, Fatih
Baltaş, Nimet
Tatar, Gizem
Koçyiğiy Kaymakçıoğlu, Bedia

Metadata

Show full item record

Citation

Tok, F., Baltaş, N., Tatar, G., & Koçyiğit-Kaymakçıoğlu, B. (2022). Synthesis, Biological Evaluation and in Silico Studies of New Pyrazoline Derivatives Bearing Benzo[d]thiazol-2(3H)-one Moiety as Potential Urease Inhibitors. Chemistry & biodiversity, 19(3), e202100826. https://doi.org/10.1002/cbdv.202100826

Abstract

Novel pyrazoline derivatives containing benzo[d]thiazol-2(3H)-one moiety were synthesized and screened for their inhibitory properties against urease, a clinically important metabolic enzyme. In vitro enzyme inhibition studies revealed that all pyrazolines (7.21-87.77 mu M) were more potent than the standard inhibitor acetohydroxamic acid (251.74 mu M) against the urease enzyme. Most notably, compound 2m, which is more active than the other compounds in vitro and molecular docking studies, showed a significant inhibition potential and efficient IC50 values (7.21 +/- 0.09 mu M) and in silico inhibition constant (0.11 mu M). Furthermore, molecular dynamics (MD) simulation analysis suggests that the binding stability of urease enzyme and compound 2m were stably maintained during the 100 ns simulation time. Compound 2m also exhibited good physicochemical and pharmacokinetic parameters. The overall results of urease inhibition have indicated that these pyrazoline derivative compounds can be further optimized and developed for the discovery of novel urease inhibitors.

Source

Chemistry & Biodiversity

Volume

19

Issue

3

URI

https://doi.org/10.1002/cbdv.202100826
https://hdl.handle.net/11436/7081

Collections

  • FEF, Kimya Bölümü Koleksiyonu [477]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.